• Title/Summary/Keyword: Imaging Mode

Search Result 335, Processing Time 0.031 seconds

Design and Verification of Satellite Attitude Control system for Roll Maneuver (인공위성의 Roll축 자세제어시스템 설계 및 검증)

  • 김희섭;김기석;안재명;김유단;최완식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.370-378
    • /
    • 1999
  • KOMPSAT is a three-axis stabilized light weight satellite, and one of the main mission objectives of the KOMPSAT is to conduct scientific and technological analysis in the areas of high resolution imaging and ocean color imaging. This kind of mission requires the satellite to roll up to 45 degrees. Bang-bang control for this rolling maneuver may activate the flexible modes, and therefore cause satellite pointing performance degradation. To deal with this problem, the roll attitude control system, especially for the science mode and maneuver mode of the KOMPSAT, is first verified by numerical simulation. And the open-loop control law for roll maneuver is proposed by use of series expansion and optimization. The proposed control law is applied to KOMPSAT to see its effectiveness.

  • PDF

Spaceborne High Speed Data Link Design for Multi-Mode SAR Image Data Transmission

  • Kwag, Young-Kil
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution because of the strict requirement far the real-time data transmission of the massive SAR data in a limited time of mission. In this paper, based on the data lint model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Visibility of Internal Target Volume of Dynamic Tumors in Free-breathing Cone-beam Computed Tomography for Image Guided Radiation Therapy

  • Kauweloa, Kevin I.;Park, Justin C.;Sandhu, Ajay;Pawlicki, Todd;Song, Bongyong;Song, William Y.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.220-229
    • /
    • 2013
  • Respiratory-induced dynamic tumors render free-breathing cone-beam computed tomography (FBCBCT) images with motion artifacts complicating the task of quantifying the internal target volume (ITV). The purpose of this paper is to study the visibility of the revealed ITV when the imaging dose parameters, such as the kVp and mAs, are varied. The $Trilogy^{TM}$ linear accelerator with an On-Board Imaging ($OBI^{TM}$) system was used to acquire low-imaging-dose-mode (LIDM: 110 kVp, 20 mA, 20 ms/frame) and high-imaging-dose-mode (HIDM: 125 kVp, 80 mA, 25 ms/frame) FBCBCT images of a 3-cm diameter sphere (density=0.855 $g/cm^3$) moving in accordance to various sinusoidal breathing patterns, each with an unique inhalation-to-exhalation (I/E) ratio, amplitude, and period. In terms of image ITV contrast, there was a small overall average change of the ITV contrast when going from HIDM to LIDM of $6.5{\pm}5.1%$ for all breathing patterns. As for the ITV visible volume measurements, there was an insignificant difference between the ITV of both the LIDM- and HIDM-FBCBCT images with an average difference of $0.5{\pm}0.5%$, for all cases, despite the large difference in the imaging dose (approximately five-fold difference of ~0.8 and 4 cGy/scan). That indicates that the ITV visibility is not very sensitive to changes in imaging dose. However, both of the FBCBCT consistently underestimated the true ITV dimensions by up to 34.8% irrespective of the imaging dose mode due to significant motion artifacts, and thus, this imaging technique is not adequate to accurately visualize the ITV for image guidance. Due to the insignificant impact of imaging dose on ITV visibility, a plausible, alternative strategy would be to acquire more X-ray projections at the LIDM setting to allow 4DCBCT imaging to better define the ITV, and at the same time, maintain a reasonable imaging dose, i.e., comparable to a single HIDM-FBCBCT scan.

Echocardiographic Evaluation of Cardiovascular Function in Cloned Dogs (심장 초음파를 이용한 복제견의 심혈관계 기능 평가)

  • Yeo, Ju-Hwan;Kim, Jae-Hwan;Kim, So-Young;Lee, Seung-Jun;Park, Noh-Won;Oh, Hyun-Ju;Kim, Min-Jung;Kim, Geon-A;Jo, Young-Kwang;Lee, Byeong-Chun;Eom, Kidong
    • Journal of Veterinary Clinics
    • /
    • v.32 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • The purpose of this study was to compare echocardiographic parameters of cloned beagle dogs with the previously reported reference range. Seven cloned dogs were assessed for anatomical features and cardiac function through left- and right-sided heart and right ventricle outflow tract from M-mode, 2D-mode, pulsed wave Doppler and tissue Doppler imaging. In all the cloned dogs, there were no abnormalities in anatomical structure and measurements were within the normal reference range. In addition, left- and right-sided myocardial function was within the normal reference range. Especially, pulmonary hypertension and right-sided heart failure frequently encountered in cloned animals were not recognized in cloned dogs. In conclusion, no evidence of cardiovascular dysfunction in mature cloned dogs could be identified either at birth or the growing stage in this study. Therefore, serious adverse effects of somatic cell nuclear transfer technology including transgenesis on cardiac morphology and function were not found in cloned dogs.

Relationship Analysis of Break-up Mode and Heat Transfer of Micro-Speaker Diaphragm (마이크로 스피커 진동판에 대한 분할진동 모드와 열전달의 관계 분석)

  • Kim, Hyun-Kab;Kim, Hie-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.333-336
    • /
    • 2017
  • A speaker diaphragm generates a divided vibration. The influence of the break-up mode is sufficient to cause a shape change in the diaphragm. In this paper, is widely used in ultra-thin multi-media devices, including smart phones is the advance guard of the IT sector, the micro-speakers and its target. Micro-speakers are different from general speakers. The plate has structural form and space constraints. In particular, they utilize a closed-type drive space. It is difficult to provide cooling for the auxiliary suspension structure because of the heat generated in the moving coil. The present study considered the relationship between the break-up mode and the heat transfer of the diaphragm. An experiment was conducted in two stages to compare the embodiment of the break-up mode and heat transfer in a certain frequency range. The changes in the heat were determined through measurements and thermal imaging of the break-up mode. The break-up mode tendency of the diaphragm could be rapidly predicted based on the imaging results using the thermal imaging camera. This will help in the optimal design of micro-speakers.

Special Issue for Biomedical Ultrasound: Towards Further Advances in Fundamentals and Applications by Comprehensive Reviews

  • Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.107-110
    • /
    • 2010
  • In this paper, the rationale and contents of the special issue of the Journal of the Acoustical Society of Korea regarding comprehensive reviews on past, present and future of biomedical ultrasound are described. Brief descriptions of invited articles are given, and efforts by all contributing authors are gratefully acknowledged.

Implementation for Texture Imaging Algorithm based on GLCM/GLDV and Use Case Experiments with High Resolution Imagery

  • Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.626-629
    • /
    • 2004
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program for GLCM algorithm is newly implemented in the MS Visual IDE environment. While, additional texture imaging modules based on GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV texture variables, it composed of six types of second order texture function in the several quantization levels of 2(binary image), 8, and 16: Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality, four directions are provided as $E-W(0^{\circ}),\;N-E(45^{\circ}),\;S-W(135^{\circ}),\;and\;N-S(90^{\circ}),$ and W-E direction is also considered in the negative direction of E- W direction. While, two direction modes are provided in this program: Omni-mode and Circular mode. Omni-mode is to compute all direction to avoid directionality problem, and circular direction is to compute texture variables by circular direction surrounding target pixel. At the second phase of this study, some examples with artificial image and actual satellite imagery are carried out to demonstrate effectiveness of texture imaging or to help texture image interpretation. As the reference, most previous studies related to texture image analysis have been used for the classification purpose, but this study aims at the creation and general uses of texture image for urban remote sensing.

  • PDF

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

Review on Usefulness of EPID (Electronic Portal Imaging Device) (EPID (Electronic Portal Imaging Device)의 유용성에 관한 고찰)

  • Lee, Choong Won;Park, Do Keun;Choi, A Hyun;Ahn, Jong Ho;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • Purpose: Replacing the film which used to be used for checking the set-up of the patient and dosimetry during radiation therapy, more and more EPID equipped devices are in use at present. Accordingly, this article tried to evaluated the accuracy of the position check-up and the usefulness of dosimetry during the use of an electronic portal imaging device. Materials and Methods: On 50 materials acquired with the search of Korea Society Radiotherapeutic Technology, The Korean Society for Radiation Oncology, and Pubmed using "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", and "In vivo dosimetry" as indexes, the usefulness of EPID was analyzed by classifying them as history of EPID and dosimetry, set-up verification and characteristics of EPID. Results: EPID is developed from the first generation of Liquid-filled ionization chamber, through the second generation of Camera-based fluoroscopy, and to the third generation of Amorphous-silicon EPID imaging modes can be divided into EPID mode, Cine mode and Integrated mode. When evaluating absolute dose accuracy of films and EPID, it was found that EPID showed within 1% and EDR2 film showed within 3% errors. It was confirmed that EPID is better in error measurement accuracy than film. When gamma analyzing the dose distribution of the base exposure plane which was calculated from therapy planning system, and planes calculated by EDR2 film and EPID, both film and EPID showed less than 2% of pixels which exceeded 1 at gamma values (r%>1) with in the thresholds such as 3%/3 mm and 2%/2 mm respectively. For the time needed for full course QA in IMRT to compare loads, EDR2 film recorded approximately 110 minutes, and EPID recorded approximately 55 minutes. Conclusion: EPID could easily replace conventional complicated and troublesome film and ionization chamber which used to be used for dosimetry and set-up verification, and it was proved to be very efficient and accurate dosimetry device in quality assurance of IMRT (intensity modulated radiation therapy). As cine mode imaging using EPID allows locating tumors in real-time without additional dose in lung and liver which are mobile according to movements of diaphragm and in rectal cancer patients who have unstable position, it may help to implement the most optimal radiotherapy for patients.

  • PDF