• 제목/요약/키워드: Imaging, three-dimensional

검색결과 710건 처리시간 0.039초

Brachytherapy: A Comprehensive Review

  • Lim, Young Kyung;Kim, Dohyeon
    • 한국의학물리학회지:의학물리
    • /
    • 제32권2호
    • /
    • pp.25-39
    • /
    • 2021
  • Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.

Phase Differences Averaging (PDA) Method for Reducing the Phase Error in Digital Holographic Microscopy (DHM)

  • Hyun-Woo, Kim;Jaehoon, Lee;Arun, Anand;Myungjin, Cho;Min-Chul, Lee
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.90-97
    • /
    • 2023
  • Digital holographic microscopy (DHM) is a three-dimensional (3D) imaging technique that uses the phase information of coherent light. In the reconstruction process of DHM, a narrow region around the positive or negative sideband from the Fourier domain is windowed to avoid noise due to the DC spectrum of the hologram spectrum. However, the limited size of the window also degrades the high-frequency information of the 3D object profile. Although a large window can have more detailed information of the 3D object shape, the noise is increased. To solve this trade-off, we propose phase difference averaging (PDA). The proposed method yields high-frequency information of the specimen while reducing the DC noise. In this paper, we explain the reconstruction algorithm for this method and compare it to various conventional filtering methods including Gaussian, Wiener, average, median, and bilateral filtering methods.

Improvement in Plume Dispersion Formulas for Stack Emissions Using Ground-based Imaging-DOAS Data

  • Lee, Hanlim;Ryu, Jaeyong;Jeong, Ukkyo;Noh, Youngmin;Shin, Sung Kyun;Hong, Hyunkee;Kwon, Soonchul
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3427-3432
    • /
    • 2014
  • This study introduces a new method of combining Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) data and plume dispersion formulas for power plant emissions to determine the three-dimensional structure of a dispersing pollution plume and the spatial distributions of trace gas volume mixing ratios (VMRs) under conditions of negligible water droplet and aerosol effects on radiative transfer within the plume. This novel remote-sensing method, applied to a power plant stack plume, was used to calculate the two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) VMRs in stack emissions for the first time. High $SO_2$ VMRs were observed only near the emission source, whereas high $NO_2$ VMRs were observed at locations several hundreds of meters away from the initial emission. The results of this study demonstrate the capability of this new method as a tool for estimating plume dimensions and trace gas VMRs in power plant emissions.

소 동물 1H 1.5 T 자기공명영상 장치용 유연인쇄기판 기반 새장형 수신 코일 센서 (FPCB-based Birdcage-Type Receiving Coil Sensor for Small Animal 1H 1.5 T Magnetic Resonance Imaging System)

  • 세이크 파이잘 아마드;김현덕
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.245-250
    • /
    • 2017
  • A novel method to implement a birdcage-type receiving coil sensor for use in a magnetic resonance imaging(MRI) system has been demonstrated employing a flexible printed circuit board (FPCB) fabrication technique. Unlike the conventional methods, the two-dimensional shape of the coil sensor is first implemented as a FPCB and then it is attached to the surface of a cylindrical supporting structure to implement the three-dimensional birdcage-type coil sensor. The proposed method is very effective to implement object-specific MRI coil sensors especially for small animal measurements in research and preclinical applications since the existing well-developed FPCB-based techniques can easily meet the requirements on accuracies and costs during coil implement process. The performances of the coil sensor verified through $^1H$ 1.5T MRI measurements for small animals and it showed excellent characteristics by providing a high spatial precision and a high signal-to-noise ratio.

3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정 (Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities)

  • 성열훈;주용현;최보영
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권4호
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Assessment and Comparison of Three Dimensional Exoscopes for Near-Infrared Fluorescence-Guided Surgery Using Second-Window Indocyanine-Green

  • Cho, Steve S.;Teng, Clare W.;Ravin, Emma De;Singh, Yash B.;Lee, John Y.K.
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권4호
    • /
    • pp.572-581
    • /
    • 2022
  • Objective : Compared to microscopes, exoscopes have advantages in field-depth, ergonomics, and educational value. Exoscopes are especially well-poised for adaptation into fluorescence-guided surgery (FGS) due to their excitation source, light path, and image processing capabilities. We evaluated the feasibility of near-infrared FGS using a 3-dimensional (3D), 4 K exoscope with near-infrared fluorescence imaging capability. We then compared it to the most sensitive, commercially-available near-infrared exoscope system (3D and 960 p). In-vitro and intraoperative comparisons were performed. Methods : Serial dilutions of indocyanine-green (1-2000 ㎍/mL) were imaged with the 3D, 4 K Olympus Orbeye (system 1) and the 3D, 960 p VisionSense Iridium (system 2). Near-infrared sensitivity was calculated using signal-to-background ratios (SBRs). In addition, three patients with brain tumors were administered indocyanine-green and imaged with system 1, with two also imaged with system 2 for comparison. Results : Systems 1 and 2 detected near-infrared fluorescence from indocyanine green concentrations of >250 ㎍/L and >31.3 ㎍/L, respectively. Intraoperatively, system 1 visualized strong near-infrared fluorescence from two, strongly gadolinium-enhancing meningiomas (SBR=2.4, 1.7). The high-resolution, bright images were sufficient for the surgeon to appreciate the underlying anatomy in the near-infrared mode. However, system 1 was not able to visualize fluorescence from a weakly-enhancing intraparenchymal metastasis. In contrast, system 2 successfully visualized both the meningioma and the metastasis but lacked high resolution stereopsis. Conclusion : Three-dimensional exoscope systems provide an alternative visualization platform for both standard microsurgery and near-infrared fluorescent guided surgery. However, when tumor fluorescence is weak (i.e., low fluorophore uptake, deep tumors), highly sensitive near-infrared visualization systems may be required.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • 제48권2호
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

마이크로 내시경 및 첨단 광 단층촬영기법을 이용한 생체 이미징 (Endoscopic Bio-Imaging Using Optical Coherence Tomography)

  • 안예찬
    • 비파괴검사학회지
    • /
    • 제31권5호
    • /
    • pp.466-471
    • /
    • 2011
  • 광 단층촬영기법은 의료영상진단 기기로 최근에 주목받고 있는 분야이다. 현재 병원 초음파보다 공간 해상도가 10-100배 우수하지만 침투깊이가 조직 내에서 1-2 mm로 얇기 때문에 인체 내 장기 이미징을 위하여서 반드시 내시경 기법을 동반하여야 한다. 본 연구를 통하여 고속 광 단층촬영기법을 소개하고 초소형 기전공학 기술을 바탕으로 개발된 내시경을 사용하여 New Zealand white rabbit의 식도와 위장 벽을 3차원으로 이미징한 결과를 고찰하였다. 개발된 내시경에는, 2축 스캔 반사경이 정전기력에 의하여 구동하는 구 동부 위에 위치하여, 입력광을 2축으로 스캔할 수 있도록 하는 구조를 포함하고 있다. 내시경의 외경은 6 mm이며 스캔 반사경의 직경은 1.2 mm 였다. 3.5초 동안 스캔하면서 3차원 이미지를 획득하였다. 3차원 이미지는 200개의 2차원 이미지를 쌓아서 구현되었으며 각각의 2차원 단면이미지는 $200{\times}500$ 픽셀들로 구성되었다. 이미지의 공간해상도는 공기 중에서 8 ${\mu}m$ 였다.

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권2호
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.