• Title/Summary/Keyword: Images processing

Search Result 4,239, Processing Time 0.025 seconds

Image Fusion Methods for Multispectral and Panchromatic Images of Pleiades and KOMPSAT 3 Satellites

  • Kim, Yeji;Choi, Jaewan;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Many applications using satellite data from high-resolution multispectral sensors require an image fusion step, known as pansharpening, before processing and analyzing the multispectral images when spatial fidelity is crucial. Image fusion methods are to improve images with higher spatial and spectral resolutions by reducing spectral distortion, which occurs on image fusion processing. The image fusion methods can be classified into MRA (Multi-Resolution Analysis) and CSA (Component Substitution Analysis) approaches. To suggest the efficient image fusion method for Pleiades and KOMPSAT (Korea Multi-Purpose Satellite) 3 satellites, this study will evaluate image fusion methods for multispectral and panchromatic images. HPF (High-Pass Filtering), SFIM (Smoothing Filter-based Intensity Modulation), GS (Gram Schmidt), and GSA (Adoptive GS) were selected for MRA and CSA based image fusion methods and applied on multispectral and panchromatic images. Their performances were evaluated using visual and quality index analysis. HPF and SFIM fusion results presented low performance of spatial details. GS and GSA fusion results had enhanced spatial information closer to panchromatic images, but GS produced more spectral distortions on urban structures. This study presented that GSA was effective to improve spatial resolution of multispectral images from Pleiades 1A and KOMPSAT 3.

Texture Image Fusion on Wavelet Scheme with Space Borne High Resolution Imagery: An Experimental Study

  • Yoo, Hee-Young;Lee , Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • Wavelet transform and its inverse processing provide the effective framework for data fusion. The purpose of this study is to investigate applicability of wavelet transform using texture images for the urban remote sensing application. We tried several experiments regarding image fusion by wavelet transform and texture imaging using high resolution images such as IKONOS and KOMPSAT EOC. As for texture images, we used homogeneity and ASM (Angular Second Moment) images according that these two types of texture images reveal detailed information of complex features of urban environment well. To find out the useful combination scheme for further applications, we performed DWT(Discrete Wavelet Transform) and IDWT(Inverse Discrete Wavelet Transform) using texture images and original images, with adding edge information on the fused images to display texture-wavelet information within edge boundaries. The edge images were obtained by the LoG (Laplacian of Gaussian) processing of original image. As the qualitative result by the visual interpretation of these experiments, the resultant image by each fusion scheme will be utilized to extract unique details of surface characterization on urban features around edge boundaries.

Accurate lattice extraction of elemental image array and pre-processing methods in computational integral imaging (컴퓨터 집적 영상에서의 정교한 요소 영상 추출 및 전처리 방법)

  • Son, Jeong-Min;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1164-1170
    • /
    • 2011
  • In this paper, we propose accurate lattice extraction of elemental image array and pre-processing methods in computational integral imaging. Pre-processing methods remove distortions and noises of the image. Such distortions occurred in pickup systems are rotational errors. Distortions will degrade the resolution of reconstructed images. To overcome this problem, we propose our methods for extraction of elemental image array and pre-processing methods. Also, we describe that distortions affect the high quality reconstruction. Optical and computational experiments indicate that reconstructed images applied our methods is better than reconstructed images unapplied our methods.

Patent Document Similarity Based on Image Analysis Using the SIFT-Algorithm and OCR-Text

  • Park, Jeong Beom;Mandl, Thomas;Kim, Do Wan
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.70-79
    • /
    • 2017
  • Images are an important element in patents and many experts use images to analyze a patent or to check differences between patents. However, there is little research on image analysis for patents partly because image processing is an advanced technology and typically patent images consist of visual parts as well as of text and numbers. This study suggests two methods for using image processing; the Scale Invariant Feature Transform(SIFT) algorithm and Optical Character Recognition(OCR). The first method which works with SIFT uses image feature points. Through feature matching, it can be applied to calculate the similarity between documents containing these images. And in the second method, OCR is used to extract text from the images. By using numbers which are extracted from an image, it is possible to extract the corresponding related text within the text passages. Subsequently, document similarity can be calculated based on the extracted text. Through comparing the suggested methods and an existing method based only on text for calculating the similarity, the feasibility is achieved. Additionally, the correlation between both the similarity measures is low which shows that they capture different aspects of the patent content.

Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network

  • Kumar, Sanjeev;Chandra, Mahesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.703-715
    • /
    • 2017
  • Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.

3D Segmentation for High-Resolution Image Datasets Using a Commercial Editing Tool in the IoT Environment

  • Kwon, Koojoo;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1126-1134
    • /
    • 2017
  • A variety of medical service applications in the field of the Internet of Things (IoT) are being studied. Segmentation is important to identify meaningful regions in images and is also required in 3D images. Previous methods have been based on gray value and shape. The Visible Korean dataset consists of serially sectioned high-resolution color images. Unlike computed tomography or magnetic resonance images, automatic segmentation of color images is difficult because detecting an object's boundaries in colored images is very difficult compared to grayscale images. Therefore, skilled anatomists usually segment color images manually or semi-automatically. We present an out-of-core 3D segmentation method for large-scale image datasets. Our method can segment significant regions in the coronal and sagittal planes, as well as the axial plane, to produce a 3D image. Our system verifies the result interactively with a multi-planar reconstruction view and a 3D view. Our system can be used to train unskilled anatomists and medical students. It is also possible for a skilled anatomist to segment an image remotely since it is difficult to transfer such large amounts of data.

An Effective Denoising Method for Images Contaminated with Mixed Noise Based on Adaptive Median Filtering and Wavelet Threshold Denoising

  • Lin, Lin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.539-551
    • /
    • 2018
  • Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.

Image enhancement of digital periapical radiographs according to diagnostic tasks

  • Choi, Jin-Woo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.44 no.1
    • /
    • pp.31-35
    • /
    • 2014
  • Purpose: This study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Materials and Methods: Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. Results: There were significant differences between the image quality of the processed images and that of the original images (P< 0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P< 0.01). Conclusion: Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

A Study on an Automatic Multi-Focus System for Cell Observation

  • Park, Jaeyoung;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • This study is concerned with the mechanism and structure of an optical microscope and an automatic multi-focus algorithm for automatically selecting sharp images from multiple foci of a cell. To obtain precise cell images quickly, a z-axis actuator with a resolution of $0.1{\mu}m$ was designed to control an optical microscope Moreover, a lighting control system was constructed to select the color and brightness of light that best suit the object being viewed. Cell images are captured by the instrument and the sharpness of each image is determined using Gaussian and Laplacian filters. Next, cubic spline interpolation and peak detection algorithms are applied to automatically find the most vivid points among multiple images of a single object. A cancer cell imaging experiment using propidium iodide staining confirmed that a sharp multipoint image can be obtained using this microscope. The proposed system is expected to save time and effort required to extract suitable cell images and increase the convenience of cell analysis.

Sharpness Enhancement of Tooth X-ray Images Through Elimination of Complicated Background (복잡한 배경 제거를 통한 치아 X-ray 영상의 선예도 개선)

  • Kun-Woo Na;Keun-Ho Rew
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • To remove unnecessary background from tooth X-ray images and enhance the sharpness of tooth and gum images, image processing techniques including contrast adjustment and histogram equalization are used. The introduction of two methods for detecting the boundary of the tooth and gum region and separating the tooth and gum from the background. In both cases, the background of the tooth X-ray images could be removed as a result, improving the quality of the images. The proposed method improves MTF (Modulation Transfer Function), an image performance indicator, as a result of measuring MTF. The original image's spatial frequency ranged from 4.73 to 11.40 lp/mm at the 10% response, whereas the proposed image's spatial frequency ranged from 10.90 to 11.85 lp/mm, giving uniformly enhanced results. In contrast, tooth and gums could not be completely separated from the background using Apple's Lift subject from background function.