• Title/Summary/Keyword: Images of a shell

Search Result 50, Processing Time 0.037 seconds

Crack Detection and Sorting of Eggs by Image Processing (영상처리에 의한 계란의 파란 검출 및 선별)

  • Cho, H.K.;Kwon, Y.;Cho, S.K.
    • Korean Journal of Poultry Science
    • /
    • v.22 no.4
    • /
    • pp.233-238
    • /
    • 1995
  • A computer vision system was built to generate images of a single, stationary egg. This system includes a CGD camera, a frame grabber, and incandescent back lighting system. Image processing algorithms were developed to inspect egg shell and to sort eggs. Those values of both gray level and area of dark spots in the egg image were used as criteria to detect holes in egg and those values of both area and roundness of dark spots in the egg image were used to detect cracks in egg. For a sample of 300 eggs, this system was able to correctly analyze an egg for the presence of a defect 97.5% of the time. The weights of eggs were found to be linear to both the projected area and the perimeter of eggs viewed from above. Those two values were used as criteria to sort eggs. The coefficients of determination(r$^2$) for the regression equations between weights and those two values were 0.967 and 0.972 in the two sets of experiment. Accuracies in grading were found to be 95.6% and 96.7% as compared with results from sizing by electronic weight scale.

  • PDF

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate (패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가)

  • Jeewoo Suh;Ju-Hyeon Park;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

Synthesis of CdS, ZnS, and CdS/ZnS Core/Shell Nanocrystals Using Dodecanethiol

  • Niu, Jinzhong;Xu, Weiwei;Shen, Huaibin;Li, Sen;Wang, Hongzhe;Li, Lin Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.393-397
    • /
    • 2012
  • We report a new route to synthesize high quality zinc blende CdS and ZnS nanocrystals in noncoordinating solvent 1-octadecene, using dodecanethiol (DDT) molecules as both the sulfur source and surface capping ligands. Different reaction temperatures and Cd(Zn)/DDT molar ratios were tested to optimize the synthesis conditions. Absorption photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) were used to characterize assynthesized nanocrystals. The narrow half width at the half-maximum on the long wavelength side of the firstexcitonic absorption peak and TEM images demonstrated nearly monodisperse size distributions of asprepared CdS, ZnS, and CdS/ZnS core/shell nanocrystals. Only trap emissions of the nanocrystals were detected when the amount of DDT was excessive, this came from the strong quenching effect of thiol groups on the nanocrystal surfaces. After overcoating with ZnS shells, band-gap emissions of CdS nanocrystals were partially recovered.

Development of Integrated fringe Analysis System: For Severe Noise-ridden Interferometric Image Analysis (통합 프린지 해석 시스템 개발 : 심한 잡음을 포함하는 간섭 이미지 해석용)

  • Kang, Min-Gu;Joo, Won-Jong;Cha, Dong-Jin;Kang, Bo-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1534-1541
    • /
    • 2003
  • A new window-based, user-friendly fringe analysis system is developed, especially for analyzing noisy interferograms. The system integrates three major techniques, that is fringe tracking, Phase shifting, and Fourier transform, into a single shell by employing a unified procedure. Since the system is made in a modular fashion and all processing modules can be shared for any technique, a user can select necessary modules and easily edit the applying order of them based on the user's analysis strategy, which should be changed depending on the noise level of the image. The system provides a high-level GUI and a variety of image handling tools and therefore users can easily access the system and produce the optimal results without giving up in the middle of a process even for severely noise-contaminated interferometric images.

Terrain Geometry from Monocular Image Sequences

  • McKenzie, Alexander;Vendrovsky, Eugene;Noh, Jun-Yong
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.98-108
    • /
    • 2008
  • Terrain reconstruction from images is an ill-posed, yet commonly desired Structure from Motion task when compositing visual effects into live-action photography. These surfaces are required for choreography of a scene, casting physically accurate shadows of CG elements, and occlusions. We present a novel framework for generating the geometry of landscapes from extremely noisy point cloud datasets obtained via limited resolution techniques, particularly optical flow based vision algorithms applied to live-action video plates. Our contribution is a new statistical approach to remove erroneous tracks ('outliers') by employing a unique combination of well established techniques-including Gaussian Mixture Models (GMMs) for robust parameter estimation and Radial Basis Functions (REFs) for scattered data interpolation-to exploit the natural constraints of this problem. Our algorithm offsets the tremendously laborious task of modeling these landscapes by hand, automatically generating a visually consistent, camera position dependent, thin-shell surface mesh within seconds for a typical tracking shot.

Local Environmental Effects on AGN Activities

  • Kim, Jaemin;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.44.2-44.2
    • /
    • 2013
  • The local environmental effects on the active galactic nucleus(AGN) activity has been studied by many authors, but there is still controversy. We performed statistical analysis for nearby(0.01 < z < 0.05) volume limited(Mr < -19) sample via visual inspection based on Sloan Digital Sky Survey Data Release7. We visually inspect around 50,000 galaxy images to find peculiar objects which show not only ongoing merging features and tidal features, but also post merging features like shell or ring structures. We found that the frequency of AGN host galaxies is at least 2 times higher among peculiar galaxies than non-peculiar galaxies, and this trend is still visible when galaxy properties such as color or stellar mass are fixed. Furthermore, L[OIII] of peculiar galaxies is found to be more increased than those of normal galaxies. The majority of the most luminous AGN hosts show peculiar feature, which indicates that the luminous AGN galaxies may be the result of the local environmental effects. In addition, the enhancement of L[OIII] in peculiar galaxies is more significant for bluer galaxies, which implies that AGN activity is enhanced effectively when gas is available. In order to ensure our results, we also checked it for a smaller subsample with 2 magnitude deeper monochromatic images provided by SDSS Stripe82 database, and found consistent results. Overall, the results of this study tell us that the local environment of galaxies affects the frequency as well as the strength of AGN activity.

  • PDF

Composition Dependence and Optical Properties of Polymethyl Methacrylate/Alumina Nanocomposite in the IR Region Determined by Kramers-Kronig Relation

  • Ghamari, Misagh;Ghasemifard, Mahdi
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • The dependence of the IR optical properties of PMMA/$Al_2O_3$ nanocomposite on the alumina content was investigated in the wavelength range of $3500-2800cm^{-1}$. The samples were prepared via emulsion polymerization technique using oleic acid as a coupling agent. Grafting density calculations were carried out by means of elemental analysis CHN to yield the best coupling agent content. FTIR analysis confirmed the existence of a chemical bond between aluminum oxide and oleic acid. The outcomes of XRD analyses showed the presence of cubic gamma aluminum oxide in the nanocomposite, in contrast to the amorphous nature of PMMA. TEM images showed the core-shell morphology of the particles other than pristine PMMA. Optical constants of the nanocomposite were calculated based on FTIR spectra and the Kramers-Kronig equations. The presence of nano alumina modified some of the optical indexes in IR region.

Luminance Change Independent 3D Snail Tracking

  • Dewi, Primastuti;Choi, Yoen-Seok;Chon, Tae-Soo;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.175-178
    • /
    • 2010
  • Slow movement of snail can be a benefit since it means less speed of tracking is required to get accurate movement track, but in the other side it is difficult to extract the object because the snail is almost as static as the background. In this paper, we present a technique to track the snail by using one of its common characteristic, dark color of its shell. The technique needs to be robust to illumination change since the experiment is usually to observe the movement of snail both at bright and dim condition. Snail position coordinate in 3D space is calculated using orthogonal stereo vision which combines the information from two images taken from cameras at the top and in front of the aquarium. Experimental results show this technique does not need prior background image extraction and robust to gradual or sudden illumination change.

  • PDF

Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data (MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화)

  • Chung, Tae-Eun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.

Confocal Microscopy Measurement of the Fiber Orientation in Short Fiber Reinforced Plastics

  • Lee, Kwang Seok;Lee, Seok Won;Youn, Jae Ryoun;Kang, Tae Jin;Chung, Kwansoo
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.163-172
    • /
    • 2001
  • To determine three-dimensional fiber orientation states in injection-molded short fiber composites a CLSM (Confocal Laser Scanning Microscope) is used. Since the CLSM optically sections the composites, more than two cross-sections either on or below the surface of the composite can be obtained. Three dimensional fiber orientation states can be determined with geometric parameters of fibers on two parallel cross-sections. For experiment, carbon fiber reinforced polystyrene is examined by the CLSM. Geometric parameters of fibers are measured by image analysis. In order to compactly describe fiber orientation states, orientation tensors are used. Orientation tensors are determined at different positions of the prepared specimen. Three dimensional orientation states are obtained without the difficulty in determining the out-of-plane angles by utilizing images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell-core structure along the thickness of the specimen.

  • PDF