Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.2.01

Composition Dependence and Optical Properties of Polymethyl Methacrylate/Alumina Nanocomposite in the IR Region Determined by Kramers-Kronig Relation  

Ghamari, Misagh (Nano Technology Laboratory, Esfarayen University of Technology)
Ghasemifard, Mahdi (Nano Technology Laboratory, Esfarayen University of Technology)
Publication Information
Abstract
The dependence of the IR optical properties of PMMA/$Al_2O_3$ nanocomposite on the alumina content was investigated in the wavelength range of $3500-2800cm^{-1}$. The samples were prepared via emulsion polymerization technique using oleic acid as a coupling agent. Grafting density calculations were carried out by means of elemental analysis CHN to yield the best coupling agent content. FTIR analysis confirmed the existence of a chemical bond between aluminum oxide and oleic acid. The outcomes of XRD analyses showed the presence of cubic gamma aluminum oxide in the nanocomposite, in contrast to the amorphous nature of PMMA. TEM images showed the core-shell morphology of the particles other than pristine PMMA. Optical constants of the nanocomposite were calculated based on FTIR spectra and the Kramers-Kronig equations. The presence of nano alumina modified some of the optical indexes in IR region.
Keywords
Alumina; Kramers-Kronig; Grafting density; Refractive index;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. M. Roessler, "Kramers-Kronig Analysis of Reflection Data," Br. J. Appl. Phys., 16 [8] 1119 (1965).   DOI
2 M. R. Querry, R. C. Waring, W. E. Holland, G. M. Hale, and W. Nijm, "Optical Constants in the Infrared for Aqueous Solutions of NaCl," JOSA, 62 [7] 849-55 (1972).   DOI
3 R. Bauer, W. Spicer, and J. J. White, "Investigation of the Kramers−Kronig Analysis: Revised Optical Constants of AgCl," JOSA, 64 [6] 830-33 (1974).   DOI
4 L. Didrikil, "Determination of the Optical Constants of Condensed Media from the Reflectance Spectra of Nonpolarized or Partly Polarized Light at an Oblique Angle of Incidence Using Kramers-Kronig Method," Opt. Spectrosc., 38 202-5 (1975).
5 K. Yamamoto and A. Masui, "Complex Refractive Index Determination of Bulk Materials from Infrared Reflection Spectra," Appl. Spectrosc., 49 [5] 639-44 (1995).   DOI
6 P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology; pp. 77-95, John Wiley & Sons, Weinheim, 2006.
7 S. Mallakpour and E. Khadem, "Recent Development in the Synthesis of Polymer Nanocomposites Based on Nano- Alumina," Prog. Polym. Sci., 51 74-93 (2015).   DOI
8 A. Kadian, S. Arora, A. Sharma, G. M. Joshi, M. Pandey, A. P. Reddy, M. Joshi, and P. Thomas, "Improved Dielectric Constant of Thermoplastic Blend as a Function of Alumina Loading," Measurement, 90 461-67 (2016).   DOI
9 K. Peters, "Polymer Optical Fiber Sensors-A Review," Smart Mater. Struct., 20 [1] 013002 (2010).   DOI
10 J. Jordan, D. Casem, P. Moy, and T. Walter, "Mechanical Properties and Shock Response of PMMA," Bull. Am. Phys. Soc., 60 (2015).
11 F. A. Alzarrug, M. M. Dimitrijevic, R. M. J. Heinemann, V. Radojevic, D. B. Stojanovic, P. S. Uskokovic, and R. Aleksic, "The Use of Different Alumina Fillers for Improvement of the Mechanical Properties of Hybrid PMMA Composites," Mater. Des., 86 575-81 (2015).   DOI
12 B. J. Ash, R. W. Siegel, and L. S. Schadler, "Glass-Transition Temperature Behavior of Alumina/PMMA Nanocomposites," J. Polym. Sci., Part B: Polym. Phys., 42 [23] 4371- 83 (2004).   DOI
13 D. L. Burris and W. G. Sawyer, "Improved Wear Resistance in Alumina-PTFE Nanocomposites with Irregular Shaped Nanoparticles," Wear, 260 [7] 915-18 (2006).   DOI
14 Z. Guo, T. Pereira, O. Choi, Y. Wang, and H. T. Hahn, "Surface Functionalized Alumina Nanoparticle Filled Polymeric Nanocomposites with Enhanced Mechanical Properties," J. Mater. Chem., 16 [27] 2800-8 (2006).   DOI
15 B.-Y. Kim, Y. Lee, S.-R. Kim, D.-G. Shin, W.-T. Kwon, D.-K. Choi, and Y. Kim, "Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites," J. Korean Ceram. Soc., 52 [4] 248-52 (2015).   DOI
16 K. M. Nam, Y. J. Lee, W. T. Kwon, S. R. Kim, H. M. Lim, H. Kim, and Y. Kim, "Preparation of $Al_2O_3$ Platelet/PMMA Composite and Its Mechanical/Therml Characterization," J. Korean Ceram. Soc., 49 [5] 438-41 (2012).   DOI
17 B.-T. Lee, D. V. Quang, and H.-Y. Song, "Fabrication of Porous $Al_2O_3-(m-Zro_2)$ Composites and $Al_2O_3-(m-Zro_2)$/PMMA Hybrid Composites by Infiltration Process," J. Korean Ceram. Soc., 44 [6] 291-96 (2007).   DOI
18 N. Cinausero, N. Azema, M. Cochez, M. Ferriol, M. Essahli, F. Ganachaud, and J. M. Lopez-Cuesta, "Influence of the Surface Modification of Alumina Nanoparticles on the Thermal Stability and Fire Reaction of PMMA Composites," Polym. Adv. Technol., 19 [6] 701-9 (2008).   DOI
19 P. Colomban, "Raman Study of the Formation of Transition Alumina Single Crystal from Protonic ${\beta}/{\beta}$" Aluminas," J. Mater. Sci. Lett., 7 [12] 1324-26 (1988).   DOI
20 L. Wu, Y. Huang, Z. Wang, L. Liu, and H. Xu, "Fabrication of Hydrophobic Alumina Aerogel Monoliths by Surface Modification and Ambient Pressure Drying," Appl. Surf. Sci., 256 [20] 5973-77 (2010).   DOI
21 F. Stern, "Elementary Theory of the Optical Properties of Solids," Solid State Phys., 15 299-408 (1963).
22 G. E. Berendsen and L. D. Galan, "Preparation and Chromatographic Properties of Some Chemically Bonded Phases for Reversed-Phase Liquid Chromatography," J. Liq. Chromatogr., 1 [5] 561-586 (1978).   DOI
23 M. Ghasemifard, E. Fathi, and M. Ghamari, "The Effect of $Fe^{3+}$-Doped on Structure and Optical Properties of Mesoporous $Al_2O_3/SiO_2$ Composite," Mater. Sci. Semicond. Process., 42 349-53 (2016).   DOI