• 제목/요약/키워드: Image-guided

검색결과 381건 처리시간 0.026초

A Method of Coupling Expected Patch Log Likelihood and Guided Filtering for Image De-noising

  • Wang, Shunfeng;Xie, Jiacen;Zheng, Yuhui;Wang, Jin;Jiang, Tao
    • Journal of Information Processing Systems
    • /
    • 제14권2호
    • /
    • pp.552-562
    • /
    • 2018
  • With the advent of the information society, image restoration technology has aroused considerable interest. Guided image filtering is more effective in suppressing noise in homogeneous regions, but its edge-preserving property is poor. As such, the critical part of guided filtering lies in the selection of the guided image. The result of the Expected Patch Log Likelihood (EPLL) method maintains a good structure, but it is easy to produce the ladder effect in homogeneous areas. According to the complementarity of EPLL with guided filtering, we propose a method of coupling EPLL and guided filtering for image de-noising. The EPLL model is adopted to construct the guided image for the guided filtering, which can provide better structural information for the guided filtering. Meanwhile, with the secondary smoothing of guided image filtering in image homogenization areas, we can improve the noise suppression effect in those areas while reducing the ladder effect brought about by the EPLL. The experimental results show that it not only retains the excellent performance of EPLL, but also produces better visual effects and a higher peak signal-to-noise ratio by adopting the proposed method.

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

Real-Time Visible-Infrared Image Fusion using Multi-Guided Filter

  • Jeong, Woojin;Han, Bok Gyu;Yang, Hyeon Seok;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3092-3107
    • /
    • 2019
  • Visible-infrared image fusion is a process of synthesizing an infrared image and a visible image into a fused image. This process synthesizes the complementary advantages of both images. The infrared image is able to capture a target object in dark or foggy environments. However, the utility of the infrared image is hindered by the blurry appearance of objects. On the other hand, the visible image clearly shows an object under normal lighting conditions, but it is not ideal in dark or foggy environments. In this paper, we propose a multi-guided filter and a real-time image fusion method. The proposed multi-guided filter is a modification of the guided filter for multiple guidance images. Using this filter, we propose a real-time image fusion method. The speed of the proposed fusion method is much faster than that of conventional image fusion methods. In an experiment, we compare the proposed method and the conventional methods in terms of quantity, quality, fusing speed, and flickering artifacts. The proposed method synthesizes 57.93 frames per second for an image size of $320{\times}270$. Based on our experiments, we confirmed that the proposed method is able to perform real-time processing. In addition, the proposed method synthesizes flicker-free video.

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

스테레오 매칭 기법을 이용한 영상유도시술 시스템 (Image-guided Surgery System Using the Stereo Matching Method)

  • 강현수;이호진;문찬홍;문원진;김형진;최근호;함영국;이수열;변홍식
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.339-346
    • /
    • 2003
  • 자기공명영상은 뛰어난 해상도의 해부학적 구조 정보를 제공하여 임상적인 외과수술에 매우 유용하게 적용되고 있다. 영상처리 기법과 MRI 영상유도기법을 이용한 뇌수술은 외과 전문의에게 많은 도움을 줄 수 있다. 본 논문에서는 스테레오 매칭 기법을 이용하여 중재적 시술이 가능한 유도영상시술 시스템의 개발에 관하여 소개하였다. 생검을 수행하기 위하여, MRI 마커, 카메라 마커, 탐침 프로브 마커를 정밀하게 제작하였고 시스템의 정확성을 입증하기 위하여 팬텀을 제작하였다. 제작된 마커와 팬텀을 이용하여 1.5 Tesla MRI 시스템으로 실험을 수행하였다. 구현된 시스템의 오차범위는 팬텀 실험에서 약 1.5%였고, 동물실험에서는 오차가 3mm 이내로 임상적용이 가능한 수준임을 착인하였다. 본 연구에서 제시한 스테레오 매칭기법을 이용한 유도영상시술 시스템은 기존의 방법보다 우수한 성능을 보여주었다.

양방향 모델을 적용한 Full-image Guided Filter의 효율적인 VLSI 구조 (Efficient VLSI Architecture of Full-Image Guided Filter Based on Two-Pass Model)

  • 이겨레;박태근
    • 한국통신학회논문지
    • /
    • 제41권11호
    • /
    • pp.1507-1514
    • /
    • 2016
  • Full-image guided filter는 커널 윈도우 영역만 필터링에 반영되는 기존의 커널 윈도우 기반 가이드 필터와 달리 가중치 전파 도식과 양방향 모델이 적용되어 영상의 모든 픽셀이 필터링에 반영된다. 이로써 가이드 필터의 경계 보존과 평활화 등의 가이드 이미지 필터의 특성을 유지하면서도 계산 복잡도를 개선할 수 있다. 본 논문에서는 full-image guided filter의 더 빠른 처리가 필요한 스테레오 비전 및 각종 실시간 시스템 분야에 적용될 수 있도록 효율적인 하드웨어 구조를 제안하였다. 필터링 프로세스에서 발생하는 각종 데이터의 종속성 분석과 영상의 PSNR 분석, 데이터 빈도 분석 등을 통하여 적합한 하드웨어 구조를 제안하였다. 또한 양방향 모델이 적용된 가중치 연산 모듈의 휴식 구간이 최소화되도록 효율적인 스케줄링을 하였고 실시간 처리가 가능하게 하였다. 제안한 하드웨어 구조는 동부하이텍 0.11um 표준셀 라이브러리로 합성하였을 경우 최대 동작주파수 214MHz(384*288 영상: 965 fps)와 76K(내부 메모리 제외) 게이트의 하드웨어 복잡도를 나타냈다.

Guided Filter를 사용한 효율적인 Reverse Tone Mapping 기법 (Efficient Reverse Tone Mapping Method Using Guided Filter)

  • 김상협;이창우
    • 방송공학회논문지
    • /
    • 제23권2호
    • /
    • pp.283-292
    • /
    • 2018
  • LDR (low dynamic range) 영상에 비해서 밝기 범위가 크게 늘어난 HDR (high dynamic range) 영상을 촬영할 수 있는 장비와 디스플레이할 수 있는 기기들이 개발되고 있고 영상의 밝기 범위를 효율적으로 변환하는 방법에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 LDR 영상을 HDR 영상으로 효율적으로 변환하기 위해서 guided filter를 사용한 reverse tone mapping 기법을 제안한다. Guided filter를 사용하여 한 장의 LDR 영상으로부터 BEF(brightness enhancement function)을 구한 후에 LDR 영상에서 밝기가 포화된 부분을 효율적으로 복원하여 HDR 영상을 생성하는 기법을 제안한다. 또한 영상이 지나치게 밝거나 어두운 경우 영상 촬영시의 노출 값을 추정하여 보정한 후에 밝기 범위를 변환하는 방법을 이용하여 생성되는 HDR 영상의 화질을 극대화하는 방법을 연구하고 모의 실험 결과로부터 제안하는 기법은 기존의 방법에 비해서 우수한 화질의 HDR 영상을 생성하는 것을 입증한다.

An Adaptive Weighted Regression and Guided Filter Hybrid Method for Hyperspectral Pansharpening

  • Dong, Wenqian;Xiao, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.327-346
    • /
    • 2019
  • The goal of hyperspectral pansharpening is to combine a hyperspectral image (HSI) with a panchromatic image (PANI) derived from the same scene to obtain a single fused image. In this paper, a new hyperspectral pansharpening approach using adaptive weighted regression and guided filter is proposed. First, the intensity information (INT) of the HSI is obtained by the adaptive weighted regression algorithm. Especially, the optimization formula is solved to obtain the closed solution to reduce the calculation amount. Then, the proposed method proposes a new way to obtain the sufficient spatial information from the PANI and INT by guided filtering. Finally, the fused HSI is obtained by adding the extracted spatial information to the interpolated HSI. Experimental results demonstrate that the proposed approach achieves better property in preserving the spectral information as well as enhancing the spatial detail compared with other excellent approaches in visual interpretation and objective fusion metrics.