• Title/Summary/Keyword: Image-based localization

Search Result 258, Processing Time 0.021 seconds

A study on Face Image Classification for Efficient Face Detection Using FLD

  • Nam, Mi-Young;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.106-109
    • /
    • 2004
  • Many reported methods assume that the faces in an image or an image sequence have been identified and localization. Face detection from image is a challenging task because of variability in scale, location, orientation and pose. In this paper, we present an efficient linear discriminant for multi-view face detection. Our approaches are based on linear discriminant. We define training data with fisher linear discriminant to efficient learning method. Face detection is considerably difficult because it will be influenced by poses of human face and changes in illumination. This idea can solve the multi-view and scale face detection problem poses. Quickly and efficiently, which fits for detecting face automatically. In this paper, we extract face using fisher linear discriminant that is hierarchical models invariant pose and background. We estimation the pose in detected face and eye detect. The purpose of this paper is to classify face and non-face and efficient fisher linear discriminant..

  • PDF

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

Localization of Unmanned Ground Vehicle based on Matching of Ortho-edge Images of 3D Range Data and DSM (3차원 거리정보와 DSM의 정사윤곽선 영상 정합을 이용한 무인이동로봇의 위치인식)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.43-54
    • /
    • 2012
  • This paper presents a new localization technique of an UGV(Unmanned Ground Vehicle) by matching ortho-edge images generated from a DSM (Digital Surface Map) which represents the 3D geometric information of an outdoor navigation environment and 3D range data which is obtained from a LIDAR (Light Detection and Ranging) sensor mounted at the UGV. Recent UGV localization techniques mostly try to combine positioning sensors such as GPS (Global Positioning System), IMU (Inertial Measurement Unit), and LIDAR. Especially, ICP (Iterative Closest Point)-based geometric registration techniques have been developed for UGV localization. However, the ICP-based geometric registration techniques are subject to fail to register 3D range data between LIDAR and DSM because the sensing directions of the two data are too different. In this paper, we introduce and match ortho-edge images between two different sensor data, 3D LIDAR and DSM, for the localization of the UGV. Details of new techniques to generating and matching ortho-edge images between LIDAR and DSM are presented which are followed by experimental results from four different navigation paths. The performance of the proposed technique is compared to a conventional ICP-based technique.

Feature Detection using Geometric Mean of Eigenvalues of Gradient Matrix (그레디언트 행렬 고유치의 기하 평균을 이용한 특징점 검출)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.769-776
    • /
    • 2014
  • It is necessary to detect the feature points existing simultaneously in both images and then find the corresponding relationship between the detected feature points. We propose a new feature detector based on geometric mean of two eigenvalues of gradient matrix which is able to measure the change of pixel intensities. The corner response of the proposed detector is proportional to the geometric mean and also the difference of two eigenvalues in the case of same geometric mean. We analyzed the localization error of the feature detection using aerial image and artificial image with various types of corners. The localization error of the proposed detector was smaller than that of the typical corner detector, Harris detector.

IIR Filter Design of HRTF for Implementation of 3D Sound (입체음향 구현을 위한 머리전달함수의 IIR필터 설계)

  • Kim Pan-Gon;Park Jang-Sik;Kim Hyun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.341-345
    • /
    • 2005
  • In this paper, we propose an algorithm for the approximation of FIR filters by IIR filters. The algorithm is based on a concept of the balanced model reduction. Head-related transfer functions(HRTFs) of dummy-head are approximated by 32-order IIR filters. The binaural sounds using the approximated HRTFs are reproduced by headphone, and serves as a cue of sound image localization. Experiment of sound image are carried out for 10 participants with computer simulation and DSP board respectively. The results of the experiments show that the localization using the approximated HRTFs by IIR filters is the same accuracy as the case of FIR filters that simulate the HRTFs.

  • PDF

Audio Source Separation Method based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part II: A Study on the Beamspace Transform Algorithms (빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part II: 빔공간-변환 기법에 대한 고찰)

  • Lee, Seok-Jin;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.332-339
    • /
    • 2012
  • Beamspace transform algorithm transforms spatial-domain data - such as x, y, z dimension - into incidence-angle-domain data, which is called beamspace-domain data. The beamspace transform method is generally used in source localization and tracking, and adaptive beamforming problem. When the beamspace transform method is used in multichannel audio source separation, the inverse beamspace transform is also important because the source image have to be reconstructed. This paper studies the beamspace transform and inverse transform algorithms for multichannel audio source separation system, especially for the beamspace-domain multichannel NMF algorithm.

Image Processing Based Time-Frequency Domain Reflectometry for Estimating the Fault Location Close to the Applied Signal Point (케이블 내 근접 결함 추정을 위한 영상 처리 기반의 시간 주파수 영역 반사파 계측법)

  • Jeong, Jong Min;Lee, Chun Ku;Yoon, Tae Sung;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1683-1689
    • /
    • 2014
  • In this paper, we propose an image processing based time-frequency domain reflectometry(TFDR) in order to estimate the fault location of a cable. The Wigner-Ville distribution is used for analysis in both the time domain and the frequency domain when the conventional TFDR estimates the fault location in a cable. However, the Winger-Ville distribution is a bi-linear function, and hence the cross-term is occurred. The conventional TFDR cannot estimate the accurate fault location due to the cross-term in case the fault location is close to the position where the reference signal is applied to the cable. The proposed method can reduce the cross-term effectively using binarization and morphological image processing, and can estimate the fault location more accurately using the template matching based cross correlation compared to the conventional TFDR. To prove the performance of the proposed method, the actual experiments are carried out in some cases.

Large-scale Language-image Model-based Bag-of-Objects Extraction for Visual Place Recognition (영상 기반 위치 인식을 위한 대규모 언어-이미지 모델 기반의 Bag-of-Objects 표현)

  • Seung Won Jung;Byungjae Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.78-85
    • /
    • 2024
  • We proposed a method for visual place recognition that represents images using objects as visual words. Visual words represent the various objects present in urban environments. To detect various objects within the images, we implemented and used a zero-shot detector based on a large-scale image language model. This zero-shot detector enables the detection of various objects in urban environments without additional training. In the process of creating histograms using the proposed method, frequency-based weighting was applied to consider the importance of each object. Through experiments with open datasets, the potential of the proposed method was demonstrated by comparing it with another method, even in situations involving environmental or viewpoint changes.

Deep Local Multi-level Feature Aggregation Based High-speed Train Image Matching

  • Li, Jun;Li, Xiang;Wei, Yifei;Wang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1597-1610
    • /
    • 2022
  • At present, the main method of high-speed train chassis detection is using computer vision technology to extract keypoints from two related chassis images firstly, then matching these keypoints to find the pixel-level correspondence between these two images, finally, detection and other steps are performed. The quality and accuracy of image matching are very important for subsequent defect detection. Current traditional matching methods are difficult to meet the actual requirements for the generalization of complex scenes such as weather, illumination, and seasonal changes. Therefore, it is of great significance to study the high-speed train image matching method based on deep learning. This paper establishes a high-speed train chassis image matching dataset, including random perspective changes and optical distortion, to simulate the changes in the actual working environment of the high-speed rail system as much as possible. This work designs a convolutional neural network to intensively extract keypoints, so as to alleviate the problems of current methods. With multi-level features, on the one hand, the network restores low-level details, thereby improving the localization accuracy of keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed experiments show the huge improvement of the proposed network over traditional methods.

Increasing the SLAM performance by integrating the grid-topology based hybrid map and the adaptive control method (격자위상혼합지도방식과 적응제어 알고리즘을 이용한 SLAM 성능 향상)

  • Kim, Soo-Hyun;Yang, Tae-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1605-1614
    • /
    • 2009
  • The technique of simultaneous localization and mapping is the most important research topic in mobile robotics. In the process of building a map in its available memory, the robot memorizes environmental information on the plane of grid or topology. Several approaches about this technique have been presented so far, but most of them use mapping technique as either grid-based map or topology-based map. In this paper we propose a frame of solving the SLAM problem of linking map covering, map building, localizing, path finding and obstacle avoiding in an automatic way. Some algorithms integrating grid and topology map are considered and this make the SLAM performance faster and more stable. The proposed scheme uses an occupancy grid map in representing the environment and then formulate topological information in path finding by A${\ast}$ algorithm. The mapping process is shown and the shortest path is decided on grid based map. Then topological information such as direction, distance is calculated on simulator program then transmitted to robot hardware devices. The localization process and the dynamic obstacle avoidance can be accomplished by topological information on grid map. While mapping and moving, pose of the robot is adjusted for correct localization by implementing additional pixel based image layer and tracking some features. A laser range finer and electronic compass systems are implemented on the mobile robot and DC geared motor wheels are individually controlled by the adaptive PD control method. Simulations and experimental results show its performance and efficiency of the proposed scheme are increased.