• Title/Summary/Keyword: Image-Retrieval

Search Result 1,064, Processing Time 0.028 seconds

A Study on Content-based Image Information Retrieval Technique (내용기반 영상정보 검색기술에 관한 이론적 고찰)

  • 노진구
    • Journal of Korean Library and Information Science Society
    • /
    • v.31 no.1
    • /
    • pp.229-258
    • /
    • 2000
  • The growth of digital image an video archives is increasing the need for tools that efficiently search through large amount of visual dta. Retrieval of visual data is important issue in multimedia database. We are using contented-based visual data retrieval method for efficient retrieval of visual data. In this paper, we introduced fundamental techniques using characteristic values of image data and indexing techniques required for content-based visual retrieval. In addition we introduced content-based visual retrieval system for use of digital library.

  • PDF

An Effective Relevance Feedbackbased Image Retrieval using Color and Texture

  • Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.746-752
    • /
    • 2003
  • In this paper, we proposed an image retrieval system with a simple and effective relevance feedback, called RAP(Reward and Punishment) algorithm. First, color and texture features were extracted from the images. Next, the extracted feature values were used for image retrieval in various forms. We applied the relevance feedback to the initial retrieved images from the image retrieval system, and compared its result with that of the conventional system. In the experiment using the test image database of 16 class 512 images, the proposed system showed the better retrieval performance of about 10∼l7 % than that of the conventional INRIA system in each relevance feedback step.

  • PDF

LDesign and implementation of a content-based image retrieval system using the duplicated color histogram and spatial information (중복된 칼라 히스토그램과 공간 정보를 이용한 내용 기반 화상 검색 시스템 설계 및 구현)

  • 김철원;최기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.889-898
    • /
    • 1997
  • Most general content-based image retrieval techniques use color and texture as retrieval indices. Spatial information is not used to color histogram and color pair based on color retrieval techniques. This paper proposes the selection of a set of representative in the duplicated color histogram, the analysis of spatial information of the selected colors and the image retrieval process based on the duplicated color histogram and spatial information. Two color historgrams for background and object are used in order to decide on color selection in the duplicated color histogram. Spatial information is obtained using a maximum entropy discretization. A retrieval process applies to duplicated color histogram and spatial to retrieve input images and relevant images. As the result of experiment of the image retrieval, improved color his togram and spatial information method hs increased the retrieval effectiveness more the color histogram method and color pair method.

  • PDF

Image retrieval based on a combination of deep learning and behavior ontology for reducing semantic gap (시맨틱 갭을 줄이기 위한 딥러닝과 행위 온톨로지의 결합 기반 이미지 검색)

  • Lee, Seung;Jung, Hye-Wuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.11
    • /
    • pp.1133-1144
    • /
    • 2019
  • Recently, the amount of image on the Internet has rapidly increased, due to the advancement of smart devices and various approaches to effective image retrieval have been researched under these situation. Existing image retrieval methods simply detect the objects in a image and carry out image retrieval based on the label of each object. Therefore, the semantic gap occurs between the image desired by a user and the image obtained from the retrieval result. To reduce the semantic gap in image retrievals, we connect the module for multiple objects classification based on deep learning with the module for human behavior classification. And we combine the connected modules with a behavior ontology. That is to say, we propose an image retrieval system considering the relationship between objects by using the combination of deep learning and behavior ontology. We analyzed the experiment results using walking and running data to take into account dynamic behaviors in images. The proposed method can be extended to the study of automatic annotation generation of images that can improve the accuracy of image retrieval results.

An interactive image retrieval system: from symbolic to semantic

  • Lan Le Thi;Boucher Alain
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.427-434
    • /
    • 2004
  • In this paper, we present a overview of content-based image retrieval (CBIR) systems: its results and its problems. We propose our CBIR system currently based on color and texture. From the CBIR systems. we discuss the way to add semantic values in image retrieval systems. There are 3 ways for adding them: concept definition, machine learning and man-machine interaction. Along with this we introduce our preliminary results and discuss them in the goal of reaching semantic retrieval. Different result representation schemes are presented. At last, we present our work to build a complete annotated image database and our image annotaion program.

  • PDF

Contents-based Image Retrieval using Fuzzy ART Neural Network (퍼지 ART 신경망을 이용한 내용기반 영상검색)

  • 박상성;이만희;장동식;김재연
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.12-17
    • /
    • 2003
  • This paper proposes content-based image retrieval system with fuzzy ART neural network algorithm. Retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster huge image data pertinently, Because current retrieval methods using similarities have several problems like low accuracy of retrieving and long retrieval time, a solution is necessary to complement these problems. This paper presents a content-based image retrieval system with neural network in order to reinforce abovementioned problems. The retrieval system using fuzzy ART algorithm normalizes color and texture as feature values of input data between 0 and 1, and then it runs after clustering the input data. The implemental result with 300 image data shows retrieval accuracy of approximately 87%.

  • PDF

A Systematic Review on Concept-based Image Retrieval Research (체계적 분석 기법을 이용한 의미기반 이미지검색 분야 고찰에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.313-332
    • /
    • 2014
  • With the increased creation, distribution, and use of image in context of the development of digital technologies and internet, research endeavors have accumulated drastically. As two dominant aspects of image retrieval have been considered content-based and concept-based image retrieval, concept-based image retrieval has been focused in the field of Library and Information Science. This study aims to systematically review the accumulated research of image retrieval from the perspective of LIS field. In order to achieve the purpose of this study, two data sets were prepared: a total of 282 image retrieval research papers from Web of Science, and a total of 35 image retrieval research from DBpia in Kore for comparison. For data analysis, systematic review methodology was utilized with bibliographic analysis of individual research papers in the data sets. The findings of this study demonstrated that two sub-areas, image indexing and description and image needs and image behavior, were dominant. Among these sub-areas, the results indicated that there were emerging areas such as collective indexing, image retrieval in terms of multi-language and multi-culture environments, and affective indexing and use. For the user-centered image retrieval research, college and graduate students were found prominent user groups for research while specific user groups such as medical/health related users, artists, and museum users were found considerably. With the comparison with the distribution of sub-areas of image retrieval research in Korea, considerable similarities were found. The findings of this study expect to guide research directions and agenda for future.

An Emotion-based Image Retrieval System by Using Fuzzy Integral with Relevance Feedback

  • Lee, Joon-Whoan;Zhang, Lei;Park, Eun-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.683-688
    • /
    • 2008
  • The emotional information processing is to simulate and recognize human sensibility, sensuality or emotion, to realize natural and harmonious human-machine interface. This paper proposes an emotion-based image retrieval method. In this method, user can choose a linguistic query among some emotional adjectives. Then the system shows some corresponding representative images that are pre-evaluated by experts. Again the user can select a representative one among the representative images to initiate traditional content-based image retrieval (CBIR). By this proposed method any CBIR can be easily expanded as emotion-based image retrieval. In CBIR of our system, we use several color and texture visual descriptors recommended by MPEG-7. We also propose a fuzzy similarity measure based on Choquet integral in the CBIR system. For the communication between system and user, a relevance feedback mechanism is used to represent human subjectivity in image retrieval. This can improve the performance of image retrieval, and also satisfy the user's individual preference.

  • PDF

An Implementation of Retrieval System for Medical Image Management (의료영상 관리를 위한 검색시스템 구현)

  • Kim, Kyung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.61-67
    • /
    • 2009
  • PACS and Medical Image System use only high level metadata in retrieving desired image nowadays. In order to retrieve Medical Image Data more efficiently, it would be needed to retrieve similarity by utilizing low level metadata as well as keyword retrieval by high level metadata. Thus, In this paper presents that it has realized similarity retrieval by low level metadata on the basis of MPEG-7, and keyword retrieval by high level metadata of DICOM base. It would be also available to look into medical image data in various methods and read accurate image promptly for diagnosis and treatment by retrieval with integrating two metadata.

The design and implementation of a content-based image retrieval system (내용기반 화상 검색시스템의 설계 및 구현)

  • 정원일;최현섭;최기호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.60-69
    • /
    • 1996
  • To retrieve complex data such as images in multimedia information, we need the content-based retrieval methods based on the visual properties rather than keywords. In this paper, a contrent-based image retrieval system is desinged and implemented to retrieve images using the features of images such as colors, lines and intensity vetor features when a visual query inputs. The contents for image retrievals are the color features extracted from the color component of 16 blocks of the image, th eline features extracted form 4 lines in the image and the shape features extracted from the intensity vectors of the 16 blocks. We can either use a whole image or a sketch image for query. As the experimental results demonstrate the precision 91% the recall 33% and the average rank 3.1 the retrieval performance is found to be high. The experimental results indicate that the retrieval using the weighted features have led to substantial improvement in the percision and performance of system.

  • PDF