최근 5년간 고속도로에서 발생한 사망 사고의 통계를 살펴보면, 고속도로 전체 사망자 중 갓길에서 발생한 사망자의 사망률이 약 3배 높은 것으로 나타났다. 이는 갓길 사고 발생 시 사고의 심각도가 매우 높다는 것을 보여주며, 갓길 차로 위반 차량을 단속하여 사고를 미연에 방지하는 것이 중요하다는 것을 시시한다. 이에 본 연구는 Faster R-CNN 기법을 활용하여 갓길 차로 위반 차량을 검출할 수 있는 방법을 제안하였다. Faster R-CNN 기법을 기반으로 차량을 탐지하고, 추가적인 판독 모듈을 구성하여 갓길 위반 여부를 판단하였다. 실험 및 평가를 위해 현실세계와 유사하게 상황을 재현할 수 있는 시뮬레이션 게임인 GTAV를 활용하였다. 이미지 형태의 학습데이터 1,800장과 평가데이터 800장을 가공 및 생성하였으며, ZFNet과 VGG16에서 Threshold 값의 변화에 따른 성능을 측정하였다. 그 결과 Threshold 0.8 기준 ZFNet 99.2%, Threshold 0.7 기준 VGG16 93.9%의 검출율을 보였고, 모델 별 평균 검출 속도는 ZFNet 0.0468초, VGG16 0.16초를 기록하여 ZFNet의 검출율이 약 7% 정도 높았으며, 검출 속도 또한 약 3.4배 빠름을 확인하였다. 이는 비교적 복잡하지 않은 네트워크에서도 입력 영상의 전처리 없이 빠른 속도로 갓길 차로 위반 차량의 검출이 가능함을 보여주며, 실제 영상자료 기반의 학습데이터셋을 충분히 확보한다면 지정 차로 위반 검출에 본 알고리즘을 활용할 수 있다는 것을 시사한다.
최근 제조업에서의 디지털 전환이 가속화되고 있다. 이에 따라 사물인터넷(internet of things: IoT) 기반으로 현장 데이터를 수집하는 기술의 중요성이 증대되고 있다. 이러한 접근법들은 주로 각종 센서와 통신 기술을 활용하여 특정 제조 데이터를 확보하는 것에 초점을 맞춘다. 현장 데이터 수집의 채널을 확장하기 위해 본 연구는 비전(vision) 인공지능 기반으로 제조 데이터를 자동 수집하는 방법을 제안한다. 이는 실시간 영상 정보를 객체 탐지 및 추적 기술로 분석하고, 필요한 제조 데이터를 확보하는 것이다. 연구진은 객체 탐지 및 추적 알고리즘으로 YOLO(You Only Look Once)와 딥소트(DeepSORT)를 적용하여 프레임별 객체의 움직임 정보를 수집한다. 이후, 움직임 정보는 후보정을 통해 두 가지 제조 데이터(생산 실적, 생산 시간)로 변환된다. 딥러닝을 위한 학습 데이터를 확보하기 위해 동적으로 움직이는 공장 모형이 제작되었다. 또한, 실시간 영상 정보가 제조 데이터로 자동 변환되어 데이터베이스에 저장되는 상황을 재현하기 위해 운영 시나리오를 수립하였다. 운영 시나리오는 6개의 설비로 구성된 흐름 생산 공정(flow-shop)을 가정한다. 운영 시나리오에 따른 제조 데이터를 수집한 결과 96.3%의 정확도를 보였다.
이륜차 전체 사고는 연평균 10.01% 증가하며, 사망자 수 또한 2.64% 증가하는 추세이다. 사륜차의 경우 도로에서 안전 운전을 강제할 수 있도록 단속 카메라가 설치되어있다. 그러나 이 단속 카메라는 사륜차 단속이 주목적이기 때문에 이륜차 단속 기능을 기대할 수 없다. 이륜차 단속은 현장 인력 투입을 통한 현장 단속에 의존할 수밖에 없다. 최근 이륜차 위법 행위 단속을 위해 경찰청에서는 '경찰청 SMART 국민제보'를 통한 이륜차 위법 행위를 국민 신고를 통해 수행 중이나 장기 지속되기 어렵다. 인력을 지속적으로 투입해야하는 유인 단속의 효과를 극대화 시킬 수 있는 적절한 단속 방안의 마련이 필요하다. 본 연구를 통해 배달 이륜차 라이더를 관리할 수 있도록 하는 제도적 장치인 배달 이륜차 라이더 자격증 ID 4종을 제안하였다. 또한, 배달 이륜차 자격증 ID 체계를 활용한 단속 실험을 수행하여 배달 이륜차 라이더 자격증 단속이 가능 여부를 D-MESO 프로그램을 통해 확인하였다.
본 연구는 식물의 비사저감효과를 정량화하기 위한 기초연구로서 해안녹화에 적합한 식물을 선발하기 위해서 실시되었다. 이를 위해서 몇몇 초본식물을 현장식재한 후 식물 생장의 지표로서 시기별 식생 피복도 모니터링을 실시하였다. 문헌조사를 통하여 24종의 해안녹화식생 후보군을 선정하여 식생포지에 생육한 후, 내염성실험을 실시하여 갯기름나물, 갯패랭이, 땅채송화, 섬기린초, 좁은잎해란초, 큰꿩의비름, 털머위, 해국 등 7종을 선정하였다. 현장식재실험은 내염성실험에서 선정된 7종과 일반 초화류인 꿀풀과 좁은잎해란초 등 2종을 추가한 총 9종에 대하여 경상북도 울진 오산항 부근 해안가에 식재 포장을 설치하여 실시되었다. 각 식물별로 약 1년 동안 정기적으로 촬영된 사진을 이미지 프로세싱 기법으로 처리하여 최종적으로 피복도를 계산하여 시기별 변화 양상을 파악하였다. 그 결과, 섬기린초, 갯패랭이, 해국 등이 연중 높은 피복도를 나타낸 반면 꿀풀과 좁은잎해란초는 거의 모든 개체가 고사하여 매우 낮은 피복도를 나타내었다. 결론적으로 섬기린초, 갯패랭이, 해국 등이 해안녹화에 적합한 종으로 판단되었다. 추후 본 연구에서 선정된 식물들의 비사저감효과를 정량화하기 위한 풍동을 이용한 추가적인 연구가 요구된다.
최근 최저시급의 가파른 인상으로 인건비에 대한 부담이 늘어남과 함께 코로나19의 여파로 무인 상점의 점유율이 높아지고 있는 추세이다. 그로 인해 무인 점포를 타겟으로 하는 도난 범죄들도 같이 늘어나고 있어 이러한 도난 사고를 방지하기 위해 Just-Walk-Out 시스템을 도입하고 고비용의 LiDAR 센서, 가중치 센서 등을 사용하거나 수동으로 지속적인 CCTV 감시를 통해서 확인하고 있다. 하지만 이런 고가의 센서를 많이 사용할수록 점포 운영에 있어 비용 부담이 늘어나게 되고, CCTV 확인은 관리자가 24시간 내내 감시하기 어려워서 사용이 제한적이다. 본 연구에서는 이런 센서들이나 사람에 의지하는 부분을 해결할 수 있고 무인점포에서 사용할 수 있는 저비용으로 도난 등의 이상행동을 하는 고객을 탐지하여 클라우드 기반의 알림을 제공하는 인공지능 영상 처리 융합 알고리즘을 제안하고자 한다. 또한 본 연구에서는 mediapipe를 이용한 모션캡쳐, YOLO를 이용한 객체탐지 그리고 융합 알고리즘을 통해 무인 점포에서 수집한 행동 패턴 데이터를 바탕으로 각 알고리즘들에 대한 정확도를 확인하며 다양한 상황 실험을 통해 융합 알고리즘의 성능을 증명했다.
원격탐사 영상을 이용한 지표 속성의 변화를 모니터링 하기 위해서 딥러닝(deep learning) 모델을 이용한 의미론적 영상 분할 방법이 최근에 널리 사용되고 있다. 대표적인 의미론적 영상 분할 딥러닝 모델인 UNet 모델을 비롯하여 다양한 종류의 UNet 기반의 딥러닝 모델들의 성능 향상을 위해서는 학습 데이터셋의 크기가 충분해야 한다. 학습 데이터셋의 크기가 커지면 이를 처리하는 하드웨어 요구 사항도 커지고 학습에 소요되는 시간도 크게 증가되는 문제점이 발생한다. 이런 문제를 해결할 수 있는 방법인 전이학습은 대규모의 학습 데이터 셋이 없어도 모델 성능을 향상시킬 수 있는 효과적인 방법이다. 본 논문에서는 UNet 기반의 딥러닝 모델들을 대표적인 사전 학습 모델(pretrained model)인 VGG19 모델 및 ResNet50 모델과 결합한 세 종류의 전이학습 모델인 UNet-ResNet50 모델, UNet-VGG19 모델, CBAM-DRUNet-VGG19 모델을 제시하고 이를 건물 추출에 적용하여 전이학습 적용에 따른 정확도 향상을 분석하였다. 딥러닝 모델의 성능이 학습률의 영향을 많이 받는 점을 고려하여 학습률 설정에 따른 각 모델별 성능 변화도 함께 분석하였다. 건물 추출 결과의 성능 평가를 위해서 Kompsat-3A 데이터셋, WHU 데이터셋, INRIA 데이터셋을 사용하였으며 세 종류의 데이터셋에 대한 정확도 향상의 평균은 UNet 모델 대비 UNet-ResNet50 모델이 5.1%, UNet-VGG19 모델과 CBAM-DRUNet-VGG19 모델은 동일하게 7.2%의 결과를 얻었다.
Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).
본 연구에서는 UAV기반 항공사진측량에 의해 정사사진 및 DEM을 생성하고 이를 침수흔적도 제작을 위한 정밀조사에 적용하고자 하였다. 2012년 9월 제6호 태풍 산바(Sanba)의 영향으로 제방붕괴 및 내수침수 피해가 발생한 구미시 고아읍 농경지를 연구대상지역으로 선정하였다. UAV사진측량 성과의 최적 정확도를 얻기 위해 연구지역에 19점의 GCP 최적 배치상태에서 Pix4Dmapper 소프트웨어를 이용한 영상처리를 통하여 점군 데이터, DEM 및 정사영상을 생성하였다. loudCompare의 CSF Filtering를 적용하여 지면요소와 비지면요소로 point cloud를 분리한 후 GRASS GIS 소프트웨어에서 비지면요소만을 사용하여 최종적으로 보정된 DEM을 생성하였다. 최종 생성된 DEM으로부터 추출한 침수위 및 침수심 데이터와 한국국토정보공사(LX)의 공공데이터 포털사이트를 통하여 제공된 2012년 당시 같은 지역에 대한 기존 자료의 침수위 및 침수심 데이터를 비교하여 제시하였다.
Dan Shao;Qiang Gao;You Cheng;Dong-Yang Du;Si-Yun Wang;Shu-Xia Wang
Korean Journal of Radiology
/
제22권3호
/
pp.425-434
/
2021
Objective: To investigate the potential value of 18F-fluorodeoxyglucose (FDG) PET/CT in predicting the survival of patients with primary tracheal malignant tumors. Materials and Methods: An analysis of FDG PET/CT findings in 37 primary tracheal malignant tumor patients with a median follow-up period of 43.2 months (range, 10.8-143.2 months) was performed. Cox proportional hazards regression analyses were used to assess the associations between quantitative 18F-FDG PET/CT parameters, other clinic-pathological factors, and overall survival (OS). A risk prognosis model was established according to the independent prognostic factors identified on multivariate analysis. A survival curve determined by the Kaplan-Meier method was used to assess whether the prognosis prediction model could effectively stratify patients with different risks factors. Results: The median survival time of the 37 patients with tracheal tumors was 38.0 months, with a 95% confidence interval of 10.8 to 65.2 months. The 3-year, 5-year and 10-year survival rate were 54.1%, 43.2%, and 16.2%, respectively. The metabolic tumor volume (MTV), total lesion glycolysis (TLG), maximum standardized uptake value, age, pathological type, extension categories, and lymph node stage were included in multivariate analyses. Multivariate analysis showed MTV (p = 0.011), TLG (p = 0.020), pathological type (p = 0.037), and extension categories (p = 0.038) were independent prognostic factors for OS. Additionally, assessment of the survival curve using the Kaplan-Meier method showed that our prognosis prediction model can effectively stratify patients with different risks factors (p < 0.001). Conclusion: This study shows that 18F-FDG PET/CT can predict the survival of patients with primary tracheal malignant tumors. Patients with an MTV > 5.19, a TLG > 16.94 on PET/CT scans, squamous cell carcinoma, and non-E1 were more likely to have a reduced OS.
본 논문에서는 스테레오 비전 센서를 이용한 프리팹 강구조물(PSS: Prefabricated Steel Structures)의 조립부 형상 품질 평가 기법을 소개한다. 스테레오 비전 센서를 통해 모형의 조립부 영상과 포인트 클라우드 데이터를 수집하였으며, 퍼지 기반 엣지 검출, 허프 변환 기반 원형의 볼트 홀 검출 등의 영상처리 알고리즘을 적용하여 조립부 영역의 볼트홀을 검출하였다. 영상 내 추출된 볼트홀 외곽선 위 세 점의 위치 정보에 대응되는 3차원 실세계 위치 정보를 깊이 영상으로부터 획득하였으며, 이를 기반으로 각 볼트홀의 3차원 중심 위치를 계산하였다. 통계적 기법 중 하나인 주성분 분석 알고리즘(PCA: Principal component analysis) 알고리즘을 적용함으로써 3차원 위치 정보를 대표하는 최적의 좌표축을 계산하였다. 이를 통해 센서의 설치 방향 및 위치에 따라 센서와 부재 간 평행이 아니더라도 안정적으로 볼트홀 간의 거리를 계측하도록 하였다. 각 볼트홀의 2차원 위치 정보를 기반으로 볼트홀의 순서를 정렬하였으며, 정렬된 볼트홀의 위치 정보를 바탕으로 인접한 볼트홀 간의 각 축의 거리 정보를 계산하여 조립부 볼트홀 위치 중심의 형상 품질을 분석하였다. 측정된 볼트홀 간의 거리 정보는 실제 도면의 거리 정보와의 절대오차와 상대오차를 계산하여 성능 비교를 진행하였으며, 중앙값 기준 1mm 내의 절대오차와 4% 이내의 상대오차의 계측 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.