• Title/Summary/Keyword: Image-Based Lighting

Search Result 237, Processing Time 0.027 seconds

Machine Parts(O-Ring) Defect Detection Using Adaptive Binarization and Convex Hull Method Based on Deep Learning (적응형 이진화와 컨벡스 헐 기법을 적용한 심층학습 기반 기계부품(오링) 불량 판별)

  • Kim, Hyun-Tae;Seong, Eun-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1853-1858
    • /
    • 2021
  • O-rings fill the gaps between mechanical parts. Until now, the sorting of defective products has been performed visually and manually, so classification errors often occur. Therefore, a camera-based defect classification system without human intervention is required. However, a binarization process is required to separate the required region from the background in the camera input image. In this paper, an adaptive binarization technique that considers the surrounding pixel values is applied to solve the problem that single-threshold binarization is difficult to apply due to factors such as changes in ambient lighting or reflections. In addition, the convex hull technique is also applied to compensate for the missing pixel part. And the learning model to be applied to the separated region applies the residual error-based deep learning neural network model, which is advantageous when the defective characteristic is non-linear. It is suggested that the proposed system through experiments can be applied to the automation of O-ring defect detection.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region (달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험)

  • Park, Jae-Min;Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.741-749
    • /
    • 2022
  • Major space agencies are planning for the rover-based lunar exploration since water-ice was detected in permanently shadowed regions (PSR). Although sunlight does not directly reach the PSRs, it is expected that reflected sunlight sustains a certain level of low-light environment. In this research, the indoor testbed was made to simulate the PSR's lighting and topological conditions, to which low light enhancement methods (CLAHE, Dehaze, RetinexNet, GLADNet) were applied to restore image brightness and color as well as to investigate their influences on the performance of feature extraction and matching methods (SIFT, SURF, ORB, AKAZE). The experiment results show that GLADNet and Dehaze images in order significantly improve image brightness and color. However, the performance of the feature extraction and matching methods were improved by Dehaze and GLADNet images in order, especially for ORB and AKAZE. Thus, in the lunar exploration, Dehaze is appropriate for building 3D topographic map whereas GLADNet is adequate for geological investigation.

A 2-Dimensional Barcode Detection Algorithm based on Block Contrast and Projection (블록 명암대비와 프로젝션에 기반한 2차원 바코드 검출 알고리즘)

  • Choi, Young-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.259-268
    • /
    • 2008
  • In an effort to increase the data capacity of one-dimensional symbology, 2D barcodes have been proposed a decade ago. In this paper, we present an effective 2D barcode detection algorithm from gray-level images, especially for the handheld 2D barcode recognition system. To locate the symbol inside the image, a criteria based on the block contrast is adopted, and a gray-scale projection with sub-pixel operation is utilized to segment the symbol precisely from the region of interest(ROI). Finally, the segmented ROI is normalized using the inverse perspective transformation for the following decoding processes. We also introduce the post-processing steps for decoding the QR-code. The proposed method ensures high performances under various lighting/printing conditions and strong perspective deformations. Experiments shows that our method is very robust and efficient in detecting the code area for the various types of 2D barcodes in real time.

Sliding Active Camera-based Face Pose Compensation for Enhanced Face Recognition (얼굴 인식률 개선을 위한 선형이동 능동카메라 시스템기반 얼굴포즈 보정 기술)

  • 장승호;김영욱;박창우;박장한;남궁재찬;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.155-164
    • /
    • 2004
  • Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user and is able to doface recognition, which is vital for many surveillance-based systems. The advantage of face recognition compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to the decreasing in dimension from image acquisition step and various changes associated with face pose and background. There are many factors that deteriorate performance of face recognition such as thedistance from camera to the face, changes in lighting, pose change, and change of facial expression. In this paper, we implement a new sliding active camera system to prevent various pose variation that influence face recognition performance andacquired frontal face images using PCA and HMM method to improve the face recognition. This proposed face recognition algorithm can be used for intelligent surveillance system and mobile robot system.

A Study on the Establishment of a Production Pipeline Imported 3D Computer Graphics for Clay Characters (3D 컴퓨터그래픽을 도입한 클레이 캐릭터 제작 공정 개발에 관한 연구)

  • Kim, Jung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1245-1257
    • /
    • 2008
  • The establishment of a production pipeline imported 30 computer graphics is suggested in this paper to improve the efficiency of existing production pipeline of clay animation. The point is that the process of building clay characters that remains labor intensive among the existing procedures is replaced by the process of creating computer generated characters. In order to create characters out of clay by means of 30 computer graphics, a diffuse map and displacement map are made of an oil-based clay according to the UVW coordination of polygon modeling, which is the same color and kind of clay used to make a clay character. In addition, a panoramic HDRI recording system is developed to record the lighting information of shooting environment for miniature sets, which is imported in 3D computer graphic tools as digital light source. On account of the new production pipeline, a hyper realistic rendering image can be produced, and at the same time it improves the traditional pipeline of stop motion animation that is know-how based procedure of a complete artist by the engineering approach to the automatic process.

  • PDF

Defect Diagnosis and Classification of Machine Parts Based on Deep Learning

  • Kim, Hyun-Tae;Lee, Sang-Hyeop;Wesonga, Sheilla;Park, Jang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.177-184
    • /
    • 2022
  • The automatic defect sorting function of machinery parts is being introduced to the automation of the manufacturing process. In the final stage of automation of the manufacturing process, it is necessary to apply computer vision rather than human visual judgment to determine whether there is a defect. In this paper, we introduce a deep learning method to improve the classification performance of typical mechanical parts, such as welding parts, galvanized round plugs, and electro galvanized nuts, based on the results of experiments. In the case of poor welding, the method to further increase the depth of layer of the basic deep learning model was effective, and in the case of a circular plug, the surrounding data outside the defective target area affected it, so it could be solved through an appropriate pre-processing technique. Finally, in the case of a nut plated with zinc, since it receives data from multiple cameras due to its three-dimensional structure, it is greatly affected by lighting and has a problem in that it also affects the background image. To solve this problem, methods such as two-dimensional connectivity were applied in the object segmentation preprocessing process. Although the experiments suggested that the proposed methods are effective, most of the provided good/defective images data sets are relatively small, which may cause a learning balance problem of the deep learning model, so we plan to secure more data in the future.

Real-time Hand Region Detection based on Cascade using Depth Information (깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출)

  • Joo, Sung Il;Weon, Sun Hee;Choi, Hyung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.713-722
    • /
    • 2013
  • This paper proposes a method of using depth information to detect the hand region in real-time based on the cascade method. In order to ensure stable and speedy detection of the hand region even under conditions of lighting changes in the test environment, this study uses only features based on depth information, and proposes a method of detecting the hand region by means of a classifier that uses boosting and cascading methods. First, in order to extract features using only depth information, we calculate the difference between the depth value at the center of the input image and the average of depth value within the segmented block, and to ensure that hand regions of all sizes will be detected, we use the central depth value and the second order linear model to predict the size of the hand region. The cascade method is applied to implement training and recognition by extracting features from the hand region. The classifier proposed in this paper maintains accuracy and enhances speed by composing each stage into a single weak classifier and obtaining the threshold value that satisfies the detection rate while exhibiting the lowest error rate to perform over-fitting training. The trained classifier is used to classify the hand region, and detects the final hand region in the final merger stage. Lastly, to verify performance, we perform quantitative and qualitative comparative analyses with various conventional AdaBoost algorithms to confirm the efficiency of the hand region detection algorithm proposed in this paper.

Development of an Edge-based Point Correlation Algorithm Avoiding Full Point Search in Visual Inspection System (전탐색 회피에 의한 고속 에지기반 점 상관 알고리즘의 개발)

  • Kang, Dong-Joong;Kim, Mun-Jo;Kim, Min-Sung;Lee, Eung-Joo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.327-336
    • /
    • 2004
  • For visual inspection system in real industrial environment, it is one of most important tasks to design fast and stable pattern matching algorithm. This paper presents an edge-based point correlation algorithm avoiding full search in visual inspection system. Conventional algorithms based on NGC(normalized gray-level correlation) have to overcome some difficulties for applying to automated inspection system in factory environment. First of all, NGC algorithms need high time complexity and thus high performance hardware to satisfy real-time process. In addition, lighting condition in realistic factory environments if not stable and therefore intensity variation from uncontrolled lights gives many roubles for applying directly NGC as pattern matching algorithm in this paper, we propose an algorithm to solve these problems from using thinned and binarized edge data and skipping full point search with edge-map analysis. A point correlation algorithm with the thinned edges is introduced with image pyramid technique to reduce the time complexity. Matching edges instead of using original gray-level pixel data overcomes NGC problems and pyramid of edges also provides fast and stable processing. All proposed methods are preyed from experiments using real images.

A Study on Replacing Method Global Illumination Using Ambient Occlusion (Ambient Occlusion을 이용한 Global Illumination 대체기법 연구)

  • Park, Jae-Wook;Kim, Yun-Jung
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.493-510
    • /
    • 2014
  • From game consoles to TV and Hollywood films, 3D rendering technology is involved in various fields. Up until the late 90s, the computer image rendering method was rasterization that mainly used Phong Shading, and up until recently it was the go-to method for movies and film animation. In the 21st century, the quality provided by Ray Tracing and the development of Global Illumination was much more realistic and thus became popularized. However, despite its growing use in architectural rendering to the markets, Global Illumination in film animation and movies was limited due to its long render time. So, in this thesis, if one were to take the concept from each rendering method and consider it from a mathematical perspective, one could adapt the Ambient Occlusion's equation to the illumination loop equation used in rasterization. This algorithm modification has the capability to reflect the lighting of a diverse array of colors, like in Global Illumination, with a fast render time, as in rasterization, and the example RenderMan Shader is based upon this new algorithm. In conclusion, with Global Illumination's naturalistic lighting and rasterization's rendering speed, the combination of the best points of each is a new method with a short rendering time while producing good quality. I hope animations and films can benefit from this algorithm by the reduction of budget with an overall better quality output in VFX production.