• 제목/요약/키워드: Image tissue feature extraction

검색결과 6건 처리시간 0.021초

A Novel Model for Smart Breast Cancer Detection in Thermogram Images

  • Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10573-10576
    • /
    • 2015
  • Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.

로그 전력 스펙트럼을 이용한 초음파 영상에서의 장기인식 (Organ Recognition in Ultrasound images Using Log Power Spectrum)

  • 박수진;손재곤;김남철
    • 한국통신학회논문지
    • /
    • 제28권9C호
    • /
    • pp.876-883
    • /
    • 2003
  • 본 논문에서는 초음파 영상에서 로그 전력 스펙트럼(log power spectrum)을 이용한 장기 인식 알고리듬을 제시한다. 제안한 알고리듬은 크게 특징추출과 특징분류의 두 단계로 구성된다. 특징추출에서는 이동불변의 성질을 가지는 로그 전력 스펙트럼을 이용하여 전처리를 수행한 입력 영상으로부터 장기 조직의 반향(echo of the tissue) 성분을 추출한다. 특징 분류에서는 마하라노비스(Mahalanobis) 거리를 사용하여 입력영상으로부터 추출한 특징벡터와 각 영상 부류의 평균벡터 사이의 유사도를 측정한다. 실제 초음파 영상에 대한 실험결과는 제안된 알고리듬이 전력 스펙트럼(power spectrum)과 유클리드(Euclid) 거리를 이용한 인식 알고리듬보다 최대 30% 향상된 인식률을, 또 가중 큐프런시(weighted quefrency) 복소 켑스트럼(complex cepstrum)을 이용한 알고리듬보다 10∼40% 향상된 인식률을 보여준다.

EXTRACTION OF THE LEAN TISSUE BOUNDARY OF A BEEF CARCASS

  • Lee, C. H.;H. Hwang
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.715-721
    • /
    • 2000
  • In this research, rule and neuro net based boundary extraction algorithm was developed. Extracting boundary of the interest, lean tissue, is essential for the quality evaluation of the beef based on color machine vision. Major quality features of the beef are size, marveling state of the lean tissue, color of the fat, and thickness of back fat. To evaluate the beef quality, extracting of loin parts from the sectional image of beef rib is crucial and the first step. Since its boundary is not clear and very difficult to trace, neural network model was developed to isolate loin parts from the entire image input. At the stage of training network, normalized color image data was used. Model reference of boundary was determined by binary feature extraction algorithm using R(red) channel. And 100 sub-images(selected from maximum extended boundary rectangle 11${\times}$11 masks) were used as training data set. Each mask has information on the curvature of boundary. The basic rule in boundary extraction is the adaptation of the known curvature of the boundary. The structured model reference and neural net based boundary extraction algorithm was developed and implemented to the beef image and results were analyzed.

  • PDF

Brain Tumor Detection Based on Amended Convolution Neural Network Using MRI Images

  • Mohanasundari M;Chandrasekaran V;Anitha S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2788-2808
    • /
    • 2023
  • Brain tumors are one of the most threatening malignancies for humans. Misdiagnosis of brain tumors can result in false medical intervention, which ultimately reduces a patient's chance of survival. Manual identification and segmentation of brain tumors from Magnetic Resonance Imaging (MRI) scans can be difficult and error-prone because of the great range of tumor tissues that exist in various individuals and the similarity of normal tissues. To overcome this limitation, the Amended Convolutional Neural Network (ACNN) model has been introduced, a unique combination of three techniques that have not been previously explored for brain tumor detection. The three techniques integrated into the ACNN model are image tissue preprocessing using the Kalman Bucy Smoothing Filter to remove noisy pixels from the input, image tissue segmentation using the Isotonic Regressive Image Tissue Segmentation Process, and feature extraction using the Marr Wavelet Transformation. The extracted features are compared with the testing features using a sigmoid activation function in the output layer. The experimental findings show that the suggested model outperforms existing techniques concerning accuracy, precision, sensitivity, dice score, Jaccard index, specificity, Positive Predictive Value, Hausdorff distance, recall, and F1 score. The proposed ACNN model achieved a maximum accuracy of 98.8%, which is higher than other existing models, according to the experimental results.

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

SVM을 이용한 유방 종양 조직 영상의 분류 (A Classification of Breast Tumor Tissue Images Using SVM)

  • 황해길;최현주;윤혜경;최흥국
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.178-181
    • /
    • 2005
  • Support vector machines is a powerful learning algorithm and attempt to separate belonging to two given sets in N-dimensional real space by a nonlinear surface, often only implicitly dened by a kernel function. We described breast tissue images analyses using texture features from Haar wavelet transformed images to classify breast lesion of ductal organ Benign, DCIS and CA. The approach for creating a classifier is composed of 2 steps: feature extraction and classification. Therefore, in the feature extraction step, we extracted texture features from wavelet transformed images with $10{\times}$ magnification. In the classification step, we created four classifiers from each image of extracted features using SVM(Support Vector Machines). In this study, we conclude that the best classifier in histological sections of breast tissue in the texture features from second-level wavelet transformed images used in Polynomial function.

  • PDF