• Title/Summary/Keyword: Image rejection receiver

Search Result 25, Processing Time 0.026 seconds

A new image rejection receiver architecture using simultaneously high-side and low-side injected LO signals (하이사이드와 로우사이드 LO 신호를 동시에 적용하는 새로운 이미지 제거 수신기 구조)

  • Moon, Hyunwon;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2013
  • In this paper, we propose a new image rejection receiver architecture using simultaneously the high-side and low-side injected LO signals. The proposed architecture has a lower noise figure (NF) performance and a higher linearity characteristic than the previous receiver architecture using a single LO signal. Also, the proposed receiver shows a higher IRR performance about 6dB than that of the previous Weaver image rejection architecture even though the same gain and phase errors between I-path and Q-path exist. To verify these characteristics, we derive an IRR formular of the proposed architecture as a function of mismatch parameters. And we demonstrate its formular's usefulness through the system simulation. Therefore, the proposed architecture will be widely used to implement the image rejection receiver due to its higher IRR performance.

A Fast and Precise Blind I/Q Mismatch Compensation for Image Rejection in Direct-Conversion Receiver

  • Kim, Suna;Yoon, Dae-Young;Park, Hyung Chul;Yoon, Giwan;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.12-21
    • /
    • 2014
  • In this paper, we propose a new digital blind in-phase/quadrature-phase (I/Q) mismatch compensation technique for image rejection in a direct-conversion receiver (DCR). The proposed image-rejection circuit adopts DC offset cancellation and a sign-sign least mean squares (LMS) algorithm with a unique step size adaptation both for a fast and precise I/Q mismatch estimation. In addition, several performance-optimizing design considerations related to accuracy, speed, and hardware simplicity are discussed. The implementation of the proposed circuit in an FPGA results in an image-rejection ratio (IRR) of 65 dB, which is the best performance with modulated signals, along with an adaptation time of 0.9 seconds, which is a tenfold increase in the compensation speed as compared to previously reported circuits. The proposed technique will be a promising solution in the area of image rejection to increase both the speed and accuracy of future DCRs.

Design and Fabrication of K-band multi-channel receiver for short-range RADAR (근거리 레이더용 K대역 다채널 전단 수신기 설계 및 제작)

  • Kim, Sang-Il;Lee, Seung-Jun;Lee, Jung-Soo;Lee, Bok-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.545-551
    • /
    • 2012
  • In this paper, K-band multi-channel receiver was designed and fabricated for low noise amplification and down conversion to L-band. The fabricated multi-channel receiver incorporates GaAs-HEMT LNA(Low noise amplifier) which provides less than a 2 dB noise figure, IR(Image Rejection) Filter for rejection of image frequency, IR(Image rejection) mixer to reject a image frequency and improve an IMD(Intermodulation Distortion) characteristic. Test results of the fabricated multi-channel receiver show less than a 3.8 dB noise figure, conversion gain of more than 27dB, and IP1dB(Input 1dB Gain Compression Point) of -9.5 dB and over.

Gain and Phase Mismatch Calibration Technique in Image-Reject RF Receiver

  • Lee, Mi-Young;Yoo, Chang-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.25-27
    • /
    • 2010
  • This paper presents a gain and phase mismatch calibration technique for an image-reject RF receiver. The gain mismatch is calibrated by directly measuring the output signal amplitudes of two signal paths. The phase mismatch is calibrated by measuring the output amplitude of the final IF output at the image band. The calibration of the gain and phase mismatch is performed at power-up, and the normal operation of the RF receiver does not interfere with the mismatch calibration circuit. To verify the proposed technique, a 2.4-GHz Weaver image-reject receiver with the gain and phase mismatch calibration circuit is implemented in a 0.18-${\mu}m$ CMOS technology. The overall receiver achieves a voltage gain of 45 dB and a noise figure of 4.8 dB. The image rejection ratio(IRR) is improved from 31 dB to 59.76 dB even with 1 dB and $5^{\circ}$ mismatch in gain and phase, respectively.

Ka-band CMOS 2-Channel Image-Reject Receiver (Ka-대역 CMOS 2채널 이미지 제거 수신기)

  • Dongju Lee;Se-Hwan An;Ji-Han Joo;Jun-Beom Kwon;Younghoon Kim;Sanghun Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.109-114
    • /
    • 2023
  • In this paper, a 2-channel Image-Reject receiver using a 65-nm CMOS process is presented for Ka-band compact radars. The designed receiver consists of Low-Noise Amplifier (LNA), IQ mixer, and Analog Baseband (ABB). ABB includes a complex filter in order to suppress unwanted images, and the variable gain amplifiers (VGAs) in RF block and ABB have gain tuning range from 4.5-56 dB for wide dynamic range. The gain of the receiver is controlled by on-chip SPI controllers. The receiver has noise figure of <15 dB, OP1dB of >4 dBm, image rejection ratio of >30 dB, and channel isolation of >45 dB at the voltage gain of 36 dB, in the Ka-band target frequency. The receiver consumes 420 mA at 1.2 V supply with die area of 4000×1600 ㎛.

Design and Fabrication of a S-BAND Receiver for Low Orbit Satellite (저궤도 위성용 S-BAND 수신기 설계 및 제작)

  • Choi, Young-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.35-38
    • /
    • 2005
  • In this study, S-Band receiver for low orbit satellite is implemented. The developed receiver is double super-heterodyne type and STDN compatible. Input/output frequency of receiver is 2034.747MHz and 18.414MHz used for KOMPSAT 2 satellite. Overall gain(@AGC=0V) and image rejection were 92.4dB and 50.2dB respectively. It was verified that receiver has stable performance to the temperature limit, power supply voltage variation and input signal level range.

  • PDF

A Fully Integrated Low-IF Receiver using Poly Phase Filter for VHF Applications (다중위상필터(Poly Phase Filter)를 이용한 VHF용 Low-IF 수신기 설계)

  • Kim, Seong-Do;Park, Dong-Woon;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.482-489
    • /
    • 2010
  • In this paper we have proposed a new architecture of DQ-IRM(Double-Quadrature Image Rejection Mixer) for image rejection in the low-IF receiver. It consist of a frequency-tunable RF PPF(Poly Phase Filter) and the quadrature mixers. The conventional DQ-IRM generates the quadrature RF signals for the RF wide band at once. But the proposed DQ-IRM with the frequency-tuable RF PPF generates the quadrature RF signals for the narrow band of 2~3 channels bandwidth, which is partitioned from the RF wide band. We designed the CMOS RF tuner for T-DMB(Terrestrial Digital Multimedia Broadcasting) with the proposed 3rd DQ-IRM using a 0.18um CMOS technology and verified the performances of the designed receiver such as the image rejection ratio, the noise figure and the power consumption. The overall NF of the RF tuner is about 1.26 dB and the image reject ratio is about 51 dB. The power consumption is 55.8 mW at 1.8 V supply voltage. The chip area is $3.0{\times}2.5mm^2$.

A design of single side-band filter for millimeter wave using martin-puplett interferometer (Martin-puplett 간섭계를 이용한 밀리미터파 대역의 단측파대 여파기 설계)

  • 한석태;김효령;이창훈;박종애;정현수;김광동;김태성;박동철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.98-105
    • /
    • 1996
  • The design method of 85 GHz-115 GHz band single side-band filter using the principle of martin-puplett inteferometer is described. It has been designed by this method and also manufactured and tested. From the test results, not only the ratio of image singal rejection of 19 dB is obtained, but also the theoretical and experimental results of center frequency of pass-band and rejection-band show the validity of the theory. This manufactured filter was installed on 100GHz band SiS (superconductor insulator superconductor ) receiver for observing cosmic radio waves and tested. We found that this filter can be used a single side-band as well as double side-band mode. The design method which is presented in this paper can be used a single side-band filter for a heterodyne type sub-milimeter wave receiver.

  • PDF

CMOS Front-End for a 5 GHz Wireless LAN Receiver (5 GHz 무선랜용 수신기의 설계)

  • Lee, Hye-Young;Yu, Sang-Dae;Lee, Ju-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.894-897
    • /
    • 2003
  • Recently, the rapid growth of mobile radio system has led to an increasing demand of low-cost high performance communication IC's. In this paper, we have designed RF front end for wireless LAN receiver employ zero-IF architecture. A low-noise amplifier (LNA) and double-balanced mixer is included in a front end. The zero-IF architecture is easy to integrate and good for low power consumption, so that is coincided to requirement of wireless LAN. But the zero-IF architecture has a serious problem of large offset. Image-reject mixer is a good structure to solve offset problem. Using offset compensation circuit is good structure, too. The front end is implemented in 0.25 ${\mu}m$ CMOS technology. The front end has a noise figure of 5.6 dB, a power consumption of 16 mW and total gain of 22 dB.

  • PDF

The Effect of Image Rejection Filter on Flatness of Microwave Terrestrial Receiver

  • Han, Sok-Kyun;Park, Byung-Ha
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.86-90
    • /
    • 2003
  • A flat conversion loss in microwave mixer is hard to achieve if integrating with an image rejection filter(IRF). This is due to the change of termination condition with respect to the LO and IF frequency at RF port where the filter has 50 ohm termination property only in the RF band. This paper describes a flatness maintenance in the down mixer concerning a diode matching condition as well as an electrical length of embedding line at RF port. The implemented single balance diode mixer is suitable for a 23 ㎓ European Terrestrial Radio. RF, LO and fixed IF frequency chosen in this paper are 21.2∼22.4 ㎓, 22.4∼23.6 ㎓ and 1.2 ㎓, respectively. The measured results show a conversion loss of 8.5 ㏈, flatness of 1.2 ㏈ p-p, input P1㏈ of 7㏈m, IIP3 of 15.42 ㏈m with nominal LO power level of 10㏈m. The return loss of RF and LO port are less than - 15 ㏈ and - 12 ㏈, respectively and IF port is less than - 6 ㏈. LO/RF and LO/IF isolation are 18 ㏈ and 50 ㏈, respectively. This approach would be a helpful reference for designing up/down converter possessing a filtering element.