• Title/Summary/Keyword: Image recognition technology

Search Result 992, Processing Time 0.026 seconds

Recognition of Missing and Bad Seedings via Color Image Precessing (칼라 영상처리에 의한 결주 및 불량모 인식)

  • 손재룡;강창호;한길수;정성림;권기영
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.253-262
    • /
    • 2001
  • This study was conducted to develop the vision system of a robotic transplanter for plug-seedling. A color image processing algorithm was developed to identify and locate empty cells and bad plants in the seedling tray. The image of pepper and tomato seedling tray was segmented into regions of plants, frame and soil using threshold technique which utilized Q of YIQ for finding leaves and H of HSI for finding frame of tray in the color coordinate system. The recognition system was able to successfully identify empty cells and bad seeding and locate their two-dimensional locations. The overall success rate of the recognition system was about 99%.

  • PDF

Building a Smart Farm in the House using Artificial Intelligence and IoT Technology (인공지능과 IoT 기술을 활용한 댁내 스마트팜 구축)

  • Moon, Ji-Ye;Gwon, Ga-Eun;Kim, Ha-Young;Moon, Jae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.818-821
    • /
    • 2020
  • The artificial intelligence software market is developing in various fields world widely. In particular, there is a wide variety of applications for image recognition technology using deep learning. This study intends to apply image recognition technology to the 'Home Gardening' market growing rapidly due to COVID-19, and aims to build a small-scale smart farm in the house using artificial intelligence and IoT technology for convenient crop cultivation for busy people living in cities. This intelligent farm system includes an automatic image recognition function and recommendation function based on temperature and humidity sensor-based indoor environment analysis.

Performance Improvement of a Deep Learning-based Object Recognition using Imitated Red-green Color Blindness of Camouflaged Soldier Images (적록색맹 모사 영상 데이터를 이용한 딥러닝 기반의 위장군인 객체 인식 성능 향상)

  • Choi, Keun Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2020
  • The camouflage pattern was difficult to distinguish from the surrounding background, so it was difficult to classify the object and the background image when the color image is used as the training data of deep-learning. In this paper, we proposed a red-green color blindness image transformation method using the principle that people of red-green blindness distinguish green color better than ordinary people. Experimental results show that the camouflage soldier's recognition performance improved by proposed a deep learning model of the ensemble technique using the imitated red-green-blind image data and the original color image data.

Development of Non-Contacting Automatic Inspection Technology of Precise Parts (정밀부품의 비접촉 자동검사기술 개발)

  • Lee, Woo-Sung;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.110-116
    • /
    • 2007
  • This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.

Affine Local Descriptors for Viewpoint Invariant Face Recognition

  • Gao, Yongbin;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.781-784
    • /
    • 2014
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we use Affine SIFT to detect affine invariant local descriptors for face recognition under large viewpoint change. Affine SIFT is an extension of SIFT algorithm. SIFT algorithm is scale and rotation invariant, which is powerful for small viewpoint changes in face recognition, but it fails when large viewpoint change exists. In our scheme, Affine SIFT is used for both gallery face and probe face, which generates a series of different viewpoints using affine transformation. Therefore, Affine SIFT allows viewpoint difference between gallery face and probe face. Experiment results show our framework achieves better recognition accuracy than SIFT algorithm on FERET database.

Implementation of Vehicle recognition system usging image based on Integrated Network Environment (통합 네트워크 환경의 영상기반 차종인식 시스템 구현)

  • 신규식;김용득
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.51-54
    • /
    • 2001
  • For performing Intelligent Transport System, I will implement the vehicle recognition system used image as well as Real time transmission module with TCP/IP. Generally, there are two kinds for vehicle recognition technology. Between two methods, the image-based method has a high dependency on environmental condition. Therefore, in this thesis I will propose vehicle recognition algorithm based on image using improved Gradient Method. Also I propose server-client modeling with TCP/IP, for the purpose of real time transmission of processed data and images. So I made the vehicle recognition and real time transmission system with TCP/IP for verification of proposed algorithm.

  • PDF

The development of food image detection and recognition model of Korean food for mobile dietary management

  • Park, Seon-Joo;Palvanov, Akmaljon;Lee, Chang-Ho;Jeong, Nanoom;Cho, Young-Im;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The aim of this study was to develop Korean food image detection and recognition model for use in mobile devices for accurate estimation of dietary intake. MATERIALS/METHODS: We collected food images by taking pictures or by searching web images and built an image dataset for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase the dataset size. The dataset for training contained more than 92,000 images categorized into 23 groups of Korean food. All images were down-sampled to a fixed resolution of $150{\times}150$ and then randomly divided into training and testing groups at a ratio of 3:1, resulting in 69,000 training images and 23,000 test images. We used a Deep Convolutional Neural Network (DCNN) for the complex recognition model and compared the results with those of other networks: AlexNet, GoogLeNet, Very Deep Convolutional Neural Network, VGG and ResNet, for large-scale image recognition. RESULTS: Our complex food recognition model, K-foodNet, had higher test accuracy (91.3%) and faster recognition time (0.4 ms) than those of the other networks. CONCLUSION: The results showed that K-foodNet achieved better performance in detecting and recognizing Korean food compared to other state-of-the-art models.

Wavelet-based Feature Extraction Algorithm for an Iris Recognition System

  • Panganiban, Ayra;Linsangan, Noel;Caluyo, Felicito
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.425-434
    • /
    • 2011
  • The success of iris recognition depends mainly on two factors: image acquisition and an iris recognition algorithm. In this study, we present a system that considers both factors and focuses on the latter. The proposed algorithm aims to find out the most efficient wavelet family and its coefficients for encoding the iris template of the experiment samples. The algorithm implemented in software performs segmentation, normalization, feature encoding, data storage, and matching. By using the Haar and Biorthogonal wavelet families at various levels feature encoding is performed by decomposing the normalized iris image. The vertical coefficient is encoded into the iris template and is stored in the database. The performance of the system is evaluated by using the number of degrees of freedom, False Reject Rate (FRR), False Accept Rate (FAR), and Equal Error Rate (EER) and the metrics show that the proposed algorithm can be employed for an iris recognition system.

Automatic Recognition of In-Process mold Dies Based on Reverse Engineering Technology (형상 역공학을 통한 공정중 금형 가공물의 자동인식)

  • 김정권;윤길상;최진화;김동우;조명우;박균명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.420-425
    • /
    • 2003
  • Generally, reverse engineering means getting CAD data from unidentified shape using vision or 3D laser scanner system. In this paper, we studied unidentified model by machine vision based reverse engineering system to get information about in-processing model. Recently, vision technology is widely used in current factories, because it could inspect the in-process object easily, quickly, accurately. The following tasks were mainly investigated and implemented. We obtained more precise data by corning camera's distortion, compensating slit-beam error and revising acquired image. Much more, we made similar curves or surface with B-spline approximation for precision. Until now, there have been many case study of shape recognition. But it was uncompatible to apply to the field, because it had taken too many processing time and has frequent recognition failure. This paper propose recognition algorithm that prevent such errors and give applications to the field.

  • PDF

Martial Arts Moves Recognition Method Based on Visual Image

  • Husheng, Zhou
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.813-821
    • /
    • 2022
  • Intelligent monitoring, life entertainment, medical rehabilitation, and other fields are only a few examples where visual image technology is becoming increasingly sophisticated and playing a significant role. Recognizing Wushu, or martial arts, movements through the use of visual image technology helps promote and develop Wushu. In order to segment and extract the signals of Wushu movements, this study analyzes the denoising of the original data using the wavelet transform and provides a sliding window data segmentation technique. Wushu movement The Wushu movement recognition model is built based on the hidden Markov model (HMM). The HMM model is trained and taught with the help of the Baum-Welch algorithm, which is then enhanced using the frequency weighted training approach and the mean training method. To identify the dynamic Wushu movement, the Viterbi algorithm is used to determine the probability of the optimal state sequence for each Wushu movement model. In light of the foregoing, an HMM-based martial arts movements recognition model is developed. The recognition accuracy of the HMM model increases to 99.60% when the number of samples is 4,000, which is greater than the accuracy of the SVM (by 0.94%), the CNN (by 1.12%), and the BP (by 1.14%). From what has been discussed, it appears that the suggested system for detecting martial arts acts is trustworthy and effective, and that it may contribute to the growth of martial arts.