• Title/Summary/Keyword: Image prediction model

Search Result 312, Processing Time 0.026 seconds

Deep Neural Network-Based Scene Graph Generation for 3D Simulated Indoor Environments (3차원 가상 실내 환경을 위한 심층 신경망 기반의 장면 그래프 생성)

  • Shin, Donghyeop;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.5
    • /
    • pp.205-212
    • /
    • 2019
  • Scene graph is a kind of knowledge graph that represents both objects and their relationships found in a image. This paper proposes a 3D scene graph generation model for three-dimensional indoor environments. An 3D scene graph includes not only object types, their positions and attributes, but also three-dimensional spatial relationships between them, An 3D scene graph can be viewed as a prior knowledge base describing the given environment within that the agent will be deployed later. Therefore, 3D scene graphs can be used in many useful applications, such as visual question answering (VQA) and service robots. This proposed 3D scene graph generation model consists of four sub-networks: object detection network (ObjNet), attribute prediction network (AttNet), transfer network (TransNet), relationship prediction network (RelNet). Conducting several experiments with 3D simulated indoor environments provided by AI2-THOR, we confirmed that the proposed model shows high performance.

CNN3D-Based Bus Passenger Prediction Model Using Skeleton Keypoints (Skeleton Keypoints를 활용한 CNN3D 기반의 버스 승객 승하차 예측모델)

  • Jang, Jin;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.90-101
    • /
    • 2022
  • Buses are a popular means of transportation. As such, thorough preparation is needed for passenger safety management. However, the safety system is insufficient because there are accidents such as a death accident occurred when the bus departed without recognizing the elderly approaching to get on in 2018. There is a safety system that prevents pinching accidents through sensors on the back door stairs, but such a system does not prevent accidents that occur in the process of getting on and off like the above accident. If it is possible to predict the intention of bus passengers to get on and off, it will help to develop a safety system to prevent such accidents. However, studies predicting the intention of passengers to get on and off are insufficient. Therefore, in this paper, we propose a 1×1 CNN3D-based getting on and off intention prediction model using skeleton keypoints of passengers extracted from the camera image attached to the bus through UDP-Pose. The proposed model shows approximately 1~2% higher accuracy than the RNN and LSTM models in predicting passenger's getting on and off intentions.

Analysis of the Spatial Distribution of Total Phosphorus in Wetland Soils Using Geostatistics (지구통계학을 이용한 습지 토양 중 총인의 공간분포 분석)

  • Kim, Jongsung;Lee, Jungwoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.551-557
    • /
    • 2016
  • Fusing satellite images and site-specific observations have potential to improve a predictive quality of environmental properties. However, the effect of the utilization of satellite images to predict soil properties in a wetland is still poorly understood. For the reason, block kriging and regression kriging were applied to a natural wetland, Water Conservation Area-2A in Florida, to compare the accuracy improvement of continuous models predicting total phosphorus in soils. Field observations were used to develop the soil total phosphorus prediction models. Additionally, the spectral data and derived indices from Landsat ETM+, which has 30 m spatial resolution, were used as independent variables for the regression kriging model. The block kriging model showed $R^2$ of 0.59 and the regression kriging model showed $R^2$ of 0.49. Although the block kriging performed better than the regession kriging, both models showed similar spatial patterns. Moreover, regression kriging utilizing a Landsat ETM+ image facilitated to capture unique and complex landscape features of the study area.

a Study on Using Social Big Data for Expanding Analytical Knowledge - Domestic Big Data supply-demand expectation - (분석지의 확장을 위한 소셜 빅데이터 활용연구 - 국내 '빅데이터' 수요공급 예측 -)

  • Kim, Jung-Sun;Kwon, Eun-Ju;Song, Tae-Min
    • Knowledge Management Research
    • /
    • v.15 no.3
    • /
    • pp.169-188
    • /
    • 2014
  • Big data seems to change knowledge management system and method of enterprises to large extent. Further, the type of method for utilization of unstructured data including image, v ideo, sensor data a nd text may determine the decision on expansion of knowledge management of the enterprise or government. This paper, in this light, attempts to figure out the prediction model of demands and supply for big data market of Korea trough data mining decision making tree by utilizing text bit data generated for 3 years on web and SNS for expansion of form for knowledge management. The results indicate that the market focused on H/W and storage leading by the government is big data market of Korea. Further, the demanders of big data have been found to put important on attribute factors including interest, quickness and economics. Meanwhile, innovation and growth have been found to be the attribute factors onto which the supplier puts importance. The results of this research show that the factors affect acceptance of big data technology differ for supplier and demander. This article may provide basic method for study on expansion of analysis form of enterprise and connection with its management activities.

  • PDF

Spiral Arm Features in Disk Galaxies: A Density-Wave Theory

  • Kim, Yonghwi;Ho, Luis C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2019
  • Several observational results show a tighter pitch angle at wavelengths of optical and near-infrared than those that are associated with star formation, which is in agreement with the prediction of the density wave theory. In my recent numerical studies, the dependence of the shock positions relative to the potential minima is due to the tendency that stronger shocks form farther downstream. This causes a systematic variation of the perpendicular Mach number, with radius and makes the pitch angle of the gaseous arms smaller than that of the stellar arms, which supports the prediction of the density-wave theory, independently. However, some observations still give controversial results which show similar pitch angles at wavelengths, and there is no statistical study comparing observations and numerical models directly. By analyzing optical image of disk galaxies in the Carnegie-Irvine Galaxy Survey (CGS), I measured the physical values of stellar and gaseous arms such as their strength, length, and pitch angles. For direct comparison with numerical results, I analyzed more than 30 additional numerical models with varying the initial parameters in model galaxies. In this talk, I will present results both of observational and numerical samples and discuss the physical properties of spiral structures based on the density-wave theory.

  • PDF

Transfer Learning-Based Feature Fusion Model for Classification of Maneuver Weapon Systems

  • Jinyong Hwang;You-Rak Choi;Tae-Jin Park;Ji-Hoon Bae
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.673-687
    • /
    • 2023
  • Convolutional neural network-based deep learning technology is the most commonly used in image identification, but it requires large-scale data for training. Therefore, application in specific fields in which data acquisition is limited, such as in the military, may be challenging. In particular, the identification of ground weapon systems is a very important mission, and high identification accuracy is required. Accordingly, various studies have been conducted to achieve high performance using small-scale data. Among them, the ensemble method, which achieves excellent performance through the prediction average of the pre-trained models, is the most representative method; however, it requires considerable time and effort to find the optimal combination of ensemble models. In addition, there is a performance limitation in the prediction results obtained by using an ensemble method. Furthermore, it is difficult to obtain the ensemble effect using models with imbalanced classification accuracies. In this paper, we propose a transfer learning-based feature fusion technique for heterogeneous models that extracts and fuses features of pre-trained heterogeneous models and finally, fine-tunes hyperparameters of the fully connected layer to improve the classification accuracy. The experimental results of this study indicate that it is possible to overcome the limitations of the existing ensemble methods by improving the classification accuracy through feature fusion between heterogeneous models based on transfer learning.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Learning Ability Prediction System for Developing Competence Based Curriculum: Focusing on the Case of D-University (역량중심 교육과정 개발을 위한 학업성취도 예측 시스템: D대학 사례를 중심으로)

  • Kim, Sungkook;Oh, Chang-Heon
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Achievement at university is recognized in a comprehensive sense as the level of qualitative change and development that students have embodied as a result of their experience in university education. Therefore, the academic achievement of university students will be given meaning in cooperation with the historical and social demands for diverse human resources such as creativity, leadership, and global ability, but it is practically an indicator of the outcome of university education. Measurement of academic achievement by such credits involves many problems, but in particular, standardization of academic achievement by credits based on evaluation methods, contents, and university rankings is a very difficult problem. In this study, we present a model that uses machine learning techniques to predict whether or not academic achievement is excellent for D-University graduates. The variables used were analyzed using up to 96 personal information and bachelor's information such as graduation year, department number, department name, etc., but when establishing a future education course, only the data after enrollment works effectively. Therefore, the items to be analyzed are limited to the recommended ability to improve the academic achievement of the department/student. In this research, we implemented an academic achievement prediction model through analysis of core abilities that reflect the philosophy, goals, human resources image, and utilized machine learning to affect the impact of the introduction of the prediction model on academic achievement. We plan to apply the results of future research to the establishment of curriculum and student guidance conducted in the department to establish a basis for improving academic achievement.

Pig Image Learning for Improving Weight Measurement Accuracy

  • Jonghee Lee;Seonwoo Park;Gipou Nam;Jinwook Jang;Sungho Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.33-40
    • /
    • 2024
  • The live weight of livestock is important information for managing their health and housing conditions, and it can be used to determine the optimal amount of feed and the timing of shipment. In general, it takes a lot of human resources and time to weigh livestock using a scale, and it is not easy to measure each stage of growth, which prevents effective breeding methods such as feeding amount control from being applied. In this paper, we aims to improve the accuracy of weight measurement of piglets, weaned pigs, nursery pigs, and fattening pigs by collecting, analyzing, learning, and predicting video and image data in animal husbandry and pig farming. For this purpose, we trained using Pytorch, YOLO(you only look once) 5 model, and Scikit Learn library and found that the actual and prediction graphs showed a similar flow with a of RMSE(root mean square error) 0.4%. and MAPE(mean absolute percentage error) 0.2%. It can be utilized in the mammalian pig, weaning pig, nursery pig, and fattening pig sections. The accuracy is expected to be continuously improved based on variously trained image and video data and actual measured weight data. It is expected that efficient breeding management will be possible by predicting the production of pigs by part through video reading in the future.

Impact Assessment of Forest Development on Net Primary Production using Satellite Image Spatial-temporal Fusion and CASA-Model (위성영상 시공간 융합과 CASA 모형을 활용한 산지 개발사업의 식생 순일차생산량에 대한 영향 평가)

  • Jin, Yi-Hua;Zhu, Jing-Rong;Sung, Sun-Yong;Lee, Dong-Ku
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.29-42
    • /
    • 2017
  • As the "Guidelines for GHG Environmental Assessment" was revised, it pointed out that the developers should evaluate GHG sequestration and storage of the developing site. However, the current guidelines only taking into account the quantitative reduction lost within the development site, and did not consider the qualitative decrease in the carbon sequestration capacity of forest edge produced by developments. In order to assess the quantitative and qualitative effects of vegetation carbon uptake, the CASA-NPP model and satellite image spatial-temporal fusion were used to estimate the annual net primary production in 2005 and 2015. The development projects between 2006 and 2014 were examined for evaluate quantitative changes in development site and qualitative changes in surroundings by development types. The RMSE value of the satellite image fusion results is less than 0.1 and approaches 0, and the correlation coefficient is more than 0.6, which shows relatively high prediction accuracy. The NPP estimation results range from 0 to $1335.53g\;C/m^2$ year before development and from 0 to $1333.77g\;C/m^2$ year after development. As a result of analyzing NPP reduction amount within the development area by type of forest development, the difference is not significant by type of development but it shows the lowest change in the sports facilities development. It was also found that the vegetation was most affected by the edge vegetation of industrial development. This suggests that the industrial development causes additional development in the surrounding area and indirectly influences the carbon sequestration function of edge vegetaion due to the increase of the edge and influx of disturbed species. The NPP calculation method and results presented in this study can be applied to quantitative and qualitative impact assessment of before and after development, and it can be applied to policies related to greenhouse gas in environmental impact assessment.