• Title/Summary/Keyword: Image optimization

Search Result 716, Processing Time 0.03 seconds

Field-Curvature Correction According to the Curvature of a CMOS Image-Sensor Using Air-Gap Optimization

  • Kwon, Jong-Hoon;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.658-664
    • /
    • 2015
  • Lens designers generally refer to flat image fields and attempt to minimize the field curvature. Present-day CMOS image sensors for mobile phone cameras, however, are not flat, but curved. Sometimes it is necessary to generate an intentional field curvature according to the degree and direction of the CMOS image-sensor’s curvature. This paper presents the degree of curvature of a CMOS image sensor measured using an interferometer, and proposes an effective compensation method that minimizes the net field curvature through optimizing the air gap between lens elements, which is demonstrated using simulations and experiments.

Implementation of CNN in the view of mini-batch DNN training for efficient second order optimization (효과적인 2차 최적화 적용을 위한 Minibatch 단위 DNN 훈련 관점에서의 CNN 구현)

  • Song, Hwa Jeon;Jung, Ho Young;Park, Jeon Gue
    • Phonetics and Speech Sciences
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2016
  • This paper describes some implementation schemes of CNN in view of mini-batch DNN training for efficient second order optimization. This uses same procedure updating parameters of DNN to train parameters of CNN by simply arranging an input image as a sequence of local patches, which is actually equivalent with mini-batch DNN training. Through this conversion, second order optimization providing higher performance can be simply conducted to train the parameters of CNN. In both results of image recognition on MNIST DB and syllable automatic speech recognition, our proposed scheme for CNN implementation shows better performance than one based on DNN.

2D Sparse Array Transducer Optimization for 3D Ultrasound Imaging

  • Choi, Jae Hoon;Park, Kwan Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.441-446
    • /
    • 2014
  • A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

Image Stitching focused on Priority Object using Deep Learning based Object Detection (딥러닝 기반 사물 검출을 활용한 우선순위 사물 중심의 영상 스티칭)

  • Rhee, Seongbae;Kang, Jeonho;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.882-897
    • /
    • 2020
  • Recently, the use of immersive media contents representing Panorama and 360° video is increasing. Since the viewing angle is limited to generate the content through a general camera, image stitching is mainly used to combine images taken with multiple cameras into one image having a wide field of view. However, if the parallax between the cameras is large, parallax distortion may occur in the stitched image, which disturbs the user's content immersion, thus an image stitching overcoming parallax distortion is required. The existing Seam Optimization based image stitching method to overcome parallax distortion uses energy function or object segment information to reflect the location information of objects, but the initial seam generation location, background information, performance of the object detector, and placement of objects may limit application. Therefore, in this paper, we propose an image stitching method that can overcome the limitations of the existing method by adding a weight value set differently according to the type of object to the energy value using object detection based on deep learning.

Research on Artificial Intelligence Based De-identification Technique of Personal Information Area at Video Data (영상데이터의 개인정보 영역에 대한 인공지능 기반 비식별화 기법 연구)

  • In-Jun Song;Cha-Jong Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2024
  • This paper proposes an artificial intelligence-based personal information area object detection optimization method in an embedded system to de-identify personal information in video data. As an object detection optimization method, first, in order to increase the detection rate for personal information areas when detecting objects, a gyro sensor is used to collect the shooting angle of the image data when acquiring the image, and the image data is converted into a horizontal image through the collected shooting angle. Based on this, each learning model was created according to changes in the size of the image resolution of the learning data and changes in the learning method of the learning engine, and the effectiveness of the optimal learning model was selected and evaluated through an experimental method. As a de-identification method, a shuffling-based masking method was used, and double-key-based encryption of the masking information was used to prevent restoration by others. In order to reuse the original image, the original image could be restored through a security key. Through this, we were able to secure security for high personal information areas and improve usability through original image restoration. The research results of this paper are expected to contribute to industrial use of data without personal information leakage and to reducing the cost of personal information protection in industrial fields using video through de-identification of personal information areas included in video data.

Optimization of Mutual Information for Multiresolution Image Registration (다해상도 영상정합을 위한 상호정보 최적화)

  • Hong, Helen;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.1
    • /
    • pp.37-49
    • /
    • 2001
  • We propose an optimization of mutual information for multiresolution image registration to represent useful information as integrated form obtaining from complementary information of multi modality images. The method applies mutual information as cost function to measure the statistical dependency or information redundancy between the image intensities of corresponding pixels in both images, which is assumed to be maximal if the images are geometrically aligned. As experimental results we validate visual inspection for accuracy, changning initial condition and addictive noise for robustness. Since our method uses the native image rather than prior feature extraction, few user interaction is required to perform the registration. In addition it leads to robust density estimation and convergence as applying non-parametric density estimation and stochastic multiresolution optimization.

  • PDF

Digital Watermarking Method using Discrete Optimization Method (이산최적화 기법을 사용한 디지털 워터마킹)

  • Lee, Chang-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2014
  • In recent, watermarking technology have been paying attention to methods avoiding illegal use and reproduce of digital contents. Then, in order to protect the right of digital contents, a watermark image is inserted into original images. In different watermarking methods, several technologies using Ant Colony Algorithm have been studied. In this paper, we propose a watermarking method using a discrete optimization method in the ants colony algorithm. This proposed method resembls the process that ants follow the pheromone traps to find out food. And when a watermark image is inserted into original images, the proposed method considers the deployment of obstacles or the balance between cells in the entire digital image. Simulation results show that the proposed method is increased in robustness of watermarked image and is decreased in the perceptibility of watermarking compared to the previous methods.

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Automatic Optimization Methods for Image Processing Programs Using OpenCL (OpenCL을 이용한 이미지 처리 프로그램의 자동 최적화 방법)

  • Shin, Jaeho;Jo, Gangwon;Lee, Ilkoo;Lee, Jaejin
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.188-193
    • /
    • 2017
  • In this paper, we propose automatic OpenCL optimization techniques that offer the best performance for image processing programs on any hardware system. Developers should seek a proper way of parallelization and an appropriate work-group size for the architecture of target compute devices to achieve the best performance. However, testing potential devices to find them is both time-consuming and costly. Our techniques automatically set up hardware-optimized parallelization and find a suitable work-group size for the target device. Furthermore, using OpenCL does not always provide better performance in image processing. Hence, we also propose a way to automatically search for a threshold image size to allow image processing programs to decide whether or not to use OpenCL. Our findings demonstrate that out techniques improve the image processing performance significantly.