• 제목/요약/키워드: Image optimization

검색결과 720건 처리시간 0.035초

다수의 영상 특징점 정합을 위한 비선형 최적화 기법 (Nonlinear Optimization Method for Multiple Image Registration)

  • 안양근;홍지만
    • 방송공학회논문지
    • /
    • 제17권4호
    • /
    • pp.634-639
    • /
    • 2012
  • 본 논문에서는 다수의 영상에서 발견된 특징점의 정확한 정합을 위한 비선형 최적화 기법을 제안한다. 영상에서 발견된 특징점은 선형 해법에 의해 다수의 영상간의 변환을 구할 수 있지만 큰 오차를 수반하게 된다. 이는 영상이 생성되는 모델이 비선형이며, 다수시점간의 운동역시 비선형의 형태를 띄기 때문이다. 하지만 다수의 영상의 비선형 최적화는 일반적인 비선형 해법을 도입하였을 때에는 복잡도가 지수적으로 증가하는 단점이 있다. 본 논문에서는 Levenberg-Marquardt 비선형 최적화 방법의 희박해법(Sparse solution)을 이용하여 다수의 특징점간의 변환을 구하는 방법을 보인다.

퍼지 시스템과 Particle Swarm Optimization(PSO)을 이용한 Prewarping 기술 (Prewarping Techniques Using Fuzzy system and Particle Swarm Optimization)

  • 장우석;강환일
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.272-274
    • /
    • 2006
  • In this paper, we concentrate on the mask design problem for optical micro-lithography. The pre-distorted mask is obtained by minimizing the error between the designed output image and the projected output image. We use the particle swarm optimization(PSO) and fuzzy system to insure that the resulting images are identical to the desired image. Our method has good performance for the iteration number by an experiment.

  • PDF

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.

개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할 (Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm)

  • 이명은;김수형;임준식
    • 정보처리학회논문지B
    • /
    • 제16B권3호
    • /
    • pp.195-202
    • /
    • 2009
  • 논문에서는 개미 군집 최적화 알고리즘을 이용하여 뇌 자기공명 영상의 백질 및 회백질 영역을 분할하는 방법을 제안한다. 확률적 조합 최적화에 적합한 알고리즘으로 알려진 개미 군집 최적화 알고리즘은 실제 개미들이 집에서 먹이를 찾아가는 동안의 방법을 기억하는 습성을 적용한 것이다. 논문에서 제안하는 방법은 개미가 먹이를 찾아가는 동안의 방법을 기억하는 습성처럼 영상에서 원하는 픽셀을 찾아갈 수 있다는 것이다. 원하는 픽셀을 찾은 개미들은 페로몬을 픽셀에 축적하게 되는데 이 페로몬은 이후에 지나가는 개미들이 다음 경로를 선택할 때 영향을 준다. 그리고 각각의 반복단계에서 상태전이 법칙에 따라 영상의 위치를 바꿔가면서 최종 목적지에 도달하게 되며, 마지막으로 페로몬 분포의 분석을 통해 영상에서 분할 된 결과를 얻는다. 제안한 알고리즘을 기존의 임계치 기반의 분할 알고리즘인 Otsu 방법, 메타휴리스틱 계열의 대표적인 방법인 유전자알고리즘, 퍼지방법, 원래의 개미 군집 최적화 알고리즘등과 비교하였다. 비교 실험을 통해 제안한 방법이 뇌의 특정 영역을 더 정확하게 분할함을 알 수 있었다.

Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법 (Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image)

  • 최재완;김용일;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

Finite Step Method for the Constrained Optimization Problem in Phase Contrast Microscopic Image Restoration

  • Adiya, Enkhbolor;Yadam, Bazarsad;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • 제1권1호
    • /
    • pp.87-93
    • /
    • 2014
  • The aim of microscopic image restoration is to recover the image by applying the inverse process of degradation, and the results facilitate automated and improved analysis of the image. In this work, we consider the problem of image restoration as a minimization problem of convex cost function, which consists of a least-squares fitting term and regularization terms with non-negative constraints. The finite step method is proposed to solve this constrained convex optimization problem. We demonstrate the convergence of this method. Efficiency and restoration capability of the proposed method were tested and illustrated through numerical experiments.

  • PDF

4 차원 Light Field 영상에서의 일관된 각도-공간적 편집 전파 (Spatio-Angular Consistent Edit Propagation for 4D Light Field Image)

  • 윌리엄;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.180-181
    • /
    • 2015
  • In this paper, we present a consistent and efficient edit propagation method that is applied for light field data. Unlike conventional sparse edit propagation, the coherency between light field sub-aperture images is fully considered by utilizing light field consistency in the optimization framework. Instead of directly solving the optimization function on all light field sub-aperture images, the proposed optimization framework performs sparse edit propagation in the extended focus image domain. The extended focus image is the representative image that contains implicit depth information and the well-focused region of all sub-aperture images. The edit results in the extended focus image are then propagated back to each light field sub-aperture image. Experimental results on test images captured by a Lytro off-the-shelf light field camera confirm that the proposed method provides robust and consistent results of edited light field sub-aperture images.

  • PDF

Compression and Enhancement of Medical Images Using Opposition Based Harmony Search Algorithm

  • Haridoss, Rekha;Punniyakodi, Samundiswary
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.288-304
    • /
    • 2019
  • The growth of telemedicine-based wireless communication for images-magnetic resonance imaging (MRI) and computed tomography (CT)-leads to the necessity of learning the concept of image compression. Over the years, the transform based and spatial based compression techniques have attracted many types of researches and achieve better results at the cost of high computational complexity. In order to overcome this, the optimization techniques are considered with the existing image compression techniques. However, it fails to preserve the original content of the diagnostic information and cause artifacts at high compression ratio. In this paper, the concept of histogram based multilevel thresholding (HMT) using entropy is appended with the optimization algorithm to compress the medical images effectively. However, the method becomes time consuming during the measurement of the randomness from the image pixel group and not suitable for medical applications. Hence, an attempt has been made in this paper to develop an HMT based image compression by utilizing the opposition based improved harmony search algorithm (OIHSA) as an optimization technique along with the entropy. Further, the enhancement of the significant information present in the medical images are improved by the proper selection of entropy and the number of thresholds chosen to reconstruct the compressed image.

위상최적설계를 이용한 CAD모델 구축 (CAD Model Construction Using Topology Optimization)

  • Lee, Dong-hoon
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.355.1-355
    • /
    • 2002
  • Topology optimization is widely accepted as a conceptual design tool for the product design. Since the resulted layout of the topology optimization is a kind of digital images represented by the density distribution, the seamless process is required to transform digital images to the CAD model for the practical use. In this paper, the general process to construct a CAD model is developed to apply for topology images based on elements. (omitted)

  • PDF

Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization

  • Chen, Yiwei;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.341-344
    • /
    • 2014
  • This study proposes a modified sub-aperture stitching algorithm, which uses an image sharpening algorithm and particle swarm optimization to improve the stitching accuracy. In sub-aperture stitching interferometers with high positional accuracy, the high-frequency components of measurements are more important than the low-frequency components when compensating for position errors using a sub-aperture stitching algorithm. Thus we use image sharpening algorithms to strengthen the high-frequency components of measurements. When using image sharpening algorithms, sub-aperture stitching algorithms based on the least-squares method easily become trapped at locally optimal solutions. However, particle swarm optimization is less likely to become trapped at a locally optimal solution, thus we utilized this method to develop a more robust algorithm. The results of simulations showed that our algorithm compensated for position errors more effectively than the existing algorithm. An experimental comparison with full aperture-testing results demonstrated the validity of the new algorithm.