• Title/Summary/Keyword: Image motion analysis

Search Result 421, Processing Time 0.025 seconds

Analysis and parameter extraction of motion blurred image (움직임 열화 현상이 발생한 영상의 분석과 파라메터 추출)

  • 최지웅;최병철;강문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1953-1962
    • /
    • 1999
  • While acquiring the image, the shaking of the image capturing equipment or the object seriously damages the image quality. This phenomenon, which degrades the clarity and the resolution of the image is called motion blur. In this paper, a newly defined function is introduced for finding the degree and the length of the motion blur. The domain of this function defined as Peak-trace domain. In The Peak-trace domain, the noise dominant region for calculating the noise variance and the signal dominant region for extracting the degree and the length of the motion blur are defined and analyzed. Using the information of the Peak-trace in the signal dominant region, we can find the direction of the motion regardless of the noise corruption. Weighted least mean square method helps extracting the Peak-trace more precisely. After getting the direction of the motion blur, we can find the length of the motion blur based on one dimensional Cepstrum. In the experiment, we could efficiently restore the degraded image using the information obtained by the proposed algorithm.

  • PDF

Realtime Face Tracking using Motion Analysis and Color Information (움직임분석 및 색상정보를 이용한 실시간 얼굴추적)

  • Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.977-984
    • /
    • 2007
  • A realtime face tracking algorithm using motion analysis from image sequences and color information is proposed. Motion area from the realtime moving images is detected by calculating temporal derivatives first, candidate pixels which represent face region is extracted by the fusion filtering with multiple color models, and realtime face tracking is performed by discriminating face components which includes eyes and lips. We improve the stability of face tracking performance by using template matching with face region in an image sequence and the reference template of face components.

Efficient Algorithms for Motion Parameter Estimation in Object-Oriented Analysis-Synthesis Coding (객체지향 분석-함성 부호화를 위한 효율적 움직임 파라미터 추정 알고리듬)

  • Lee Chang Bum;Park Rae-Hong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.653-660
    • /
    • 2004
  • Object-oriented analysis-synthesis coding (OOASC) subdivides each image of a sequence into a number of moving objects and estimates and compensates the motion of each object. It employs a motion parameter technique for estimating motion information of each object. The motion parameter technique employing gradient operators requires a high computational load. The main objective of this paper is to present efficient motion parameter estimation techniques using the hierarchical structure in object-oriented analysis-synthesis coding. In order to achieve this goal, this paper proposes two algorithms : hybrid motion parameter estimation method (HMPEM) and adaptive motion parameter estimation method (AMPEM) using the hierarchical structure. HMPEM uses the proposed hierarchical structure, in which six or eight motion parameters are estimated by a parameter verification process in a low-resolution image, whose size is equal to one fourth of that of an original image. AMPEM uses the same hierarchical structure with the motion detection criterion that measures the amount of motion based on the temporal co-occurrence matrices for adaptive estimation of the motion parameters. This method is fast and easily implemented using parallel processing techniques. Theoretical analysis and computer simulation show that the peak signal to noise ratio (PSNR) of the image reconstructed by the proposed method lies between those of images reconstructed by the conventional 6- and 8-parameter estimation methods with a greatly reduced computational load by a factor of about four.

A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters (소나 플랫폼의 운동 파라미터에 따른 합성개구소나 영상 왜곡의 정량적 분석)

  • Kim, Sea-Moon;Byun, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • Synthetic aperture sonars as well as side scan sonars or multibeam echo sounders have been commercialized and are widely used for seafloor imaging. In Korea related research such as the development of a towed synthetic aperture sonar system is underway. In order to obtain high-resolution synthetic aperture sonar images, it is necessary to accurately estimate the platform motion on which it is installed, and a precise underwater navigation system is required. In this paper we are going to provide reference data for determining the required navigation accuracy and precision of navigation sensors by quantitatively analyzing how much distortion of the sonar images occurs according to motion characteristics of the platform equipped with the synthetic aperture sonar. Five types of motions are considered and normalized root mean square error is defined for quantitative analysis. Simulation for error analysis with parameter variation of motion characteristics results in that yaw and sway motion causes the largest image distortion whereas the effect of pitch and heave motion is not significant.

Enhancement of noisy image sequence using order statistic-adaptive weighted average hybrid filters (순서 통계형-적응 가중평균 혼성필터를 이용한 잡음화된 영상열의 향상)

  • 박순영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.193-204
    • /
    • 1997
  • In this research we propose the design of the Order Statistic-Adaptive Weighted Average Hybrid(OS-AWAH) filter which can suppress noise from the corrupted image sequence effectively while preserving the image structure. The proposed filter combines the desirable properties of the order static based spatial filter which can preserve the image structure while reducing noise and the adaptive weighted average based temporal filter which can adapt the filtering weights according to the amount of motion without motion estimation. Performance characteristics of the OS-AWAH filter in noisy sequences containing moving step edges are investigated throuth computer simulations and compared with the median based filters such as 3-D WM(weighted median) filter, MMF (multistage median filter), ADCWM(adaptive directional center weighted median) filter. The visual evaluations are also carried out by applyin gthe filters to the real images. The statistical analysis and experimental reslts show that the OS-AWAH filter is effective in preserving image structures while suppressing noise effectively without motion compensation preprocessing.

  • PDF

Development and Performance Analysis of a Near Real-Time Sensor Model Correction System for Frame Motion Imagery (프레임동영상의 근실시간 센서모델 보정시스템 개발 및 성능분석)

  • Kwon, Hyuk Tae;Koh, Jin-Woo;Kim, Sanghee;Park, Se Hyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2018
  • Due to the increasing demand for more rapid, precise and accurate geolocation of the targets on video frames from UAVs, an efficient and timely method for correcting sensor models of motion imagery is required. In this paper, we propose a method to adjust or correct sensor models of motion imagery frames using space resection via image matching with reference data. The proposed method adopts image matching between the motion imagery frames and the reference frames which are synthesized from reference data. Ground or reference control points are generated or selected through the matching process in near real time, and are used for space resection to get adjusted sensor models. Finally, more precise and accurate geolocation of the targets can possibly be done on the fly, and we have got the promising result on performance analysis in terms of the geolocation quality.

Unsupervised Motion Pattern Mining for Crowded Scenes Analysis

  • Wang, Chongjing;Zhao, Xu;Zou, Yi;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3315-3337
    • /
    • 2012
  • Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.

A Fast Motion Estimation Algorithm with Motion Analysis (움직임 해석을 통한 고속 움직임 예측 알고리즘)

  • Jun, Young-Hyun;Yun, Jong-Ho;Cho, Hwa-Hyun;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • We present an efficient block-based motion estimation algorithm with motion analysis. The motion analysis determines a size of search pattern and a maximum repeated count of search pattern. In case of large movement in large image, we reduce search points and the local minimum which caused by low performance. The proposed algorithm employs with searching step of 2. The first step determines an initial search point with neighbor block vector and a size of initial search pattern. The second step determines a size of search pattern and a maximum repeated count with motion analysis. We improve motion prediction accuracy while reducing required computational complexity compared to other fast block-based motion estimation algorithms.

  • PDF

Gait Recognition using Modified Motion Silhouette Image (개선된 움직임 실루엣 영상을 이용한 발걸음 인식에 관한 연구)

  • Hong Sung-Jun;Lee Hee-Sung;Oh Kyong-Sae;Kim Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.266-270
    • /
    • 2006
  • In this paper, we propose the human identification system based on Hidden Markov model using gait. Since each gait cycle consists of a set of continuous motion states and transition across states has probabilistic dependences, individual gait can be modeled using Hidden Markov model. We assume that individual gait consists of N discrete transitions and we propose gait feature representation, Modified Motion Silhouette Image (MMSI) to represent and recognize individual gait. MMSI is defined as a gray-level image and it provides not only spatial information but also temporal information. The experimental results show gait recognition performance of proposed system.

Motion Analysis Using Competitive Learning Neural Network and Fuzzy Reasoning (경쟁학습 신경망과 퍼지추론법을 이용한 움직임 분석)

  • 이주한;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.117-127
    • /
    • 1995
  • In this paper, we suggest a motion analysis method using ART-I1 competitive learning neural network and fuzzy reasoning by matching the same objects through the consecutive image sequence. we use the size and mean intensity of the region obtained from image segmentation for the region matching by the region and use a ART-I1 competitive learning neural network wh~ch has a learning ability to reflect the topology of the input patterns in order to select characteristic points to describe the shape of a region. Motion vectors for each regions are obtained by matching selected characteristic points. However, the two dimensional image, the projection of the the three dimensional real world, produces fuzziness in motion analysis due to its incompleteness by nature and the error from image segmentation used for extracting information about objects. Therefore, the belief degrees for each regions are calculated using fuzzy reasoning to l-nanipulate uncertainty in motion estimation.

  • PDF