• Title/Summary/Keyword: Image merging

Search Result 255, Processing Time 0.027 seconds

A Multiresolution Image Segmentation Method using Stabilized Inverse Diffusion Equation (안정화된 역 확산 방정식을 사용한 다중해상도 영상 분할 기법)

  • Lee Woong-Hee;Kim Tae-Hee;Jeong Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • Image segmentation is the task which partitions the image into meaningful regions and considered to be one of the most important steps in computer vision and image processing. Image segmentation is also widely used in object-based video compression such as MPEG-4 to extract out the object regions from the given frame. Watershed algorithm is frequently used to obtain the more accurate region boundaries. But, it is well known that the watershed algorithm is extremely sensitive to gradient noise and usually results in oversegmentation. To solve such a problem, we propose an image segmentation method which is robust to noise by using stabilized inverse diffusion equation (SIDE) and is more efficient in segmentation by employing multiresolution approach. In this paper, we apply both the region projection method using labels of adjacent regions and the region merging method based on region adjacency graph (RAG). Experimental results on noisy image show that the oversegmenation is reduced and segmentation efficiency is increased.

Extraction of a Central Object in a Color Image Based on Significant Colors (특이 칼라에 기반한 칼라 영상에서의 중심 객체 추출)

  • SungYoung Kim;Eunkyung Lim;MinHwan Kim
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.648-657
    • /
    • 2004
  • A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.

  • PDF

A Study of Land-Cover Classification Technique for Merging Image Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 중합 영상의 토지피복분류기법 연구)

  • 신석효;안기원;양경주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study was presented more better land cover classification method through an algorithm development. We accomplished FCM(Fuzzy C-Mean) classification technique with MLC (Maximum Likelihood classification) technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method. This study is used to the high-resolution(6.6m) Electro-Optical Camera(EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1(KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer(MODIS) image data(36 bands).

Application of Three-Dimensional Light Microscopy for Thick Specimen Studies

  • Rhyu, Yeon Seung;Lee, Se Jeong;Kim, Dong Heui;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • The thickness of specimen is an important factor in microscopic researches. Thicker specimen contains more information, but it is difficult to obtain well focused image with precise details due to optical limit of conventional microscope. Recently, a microscope unit that combines improved illumination system, which allows real time three-dimensional (3D) image and automatic z-stack merging software. In this research, we evaluated the usefulness of this unit in observing thick samples; Golgi stained nervous tissue and ground prepared bone, tooth, and non-transparent small sample; zebra fish teeth. Well focused image in thick samples was obtained by processing z-stack images with Panfocal software. A clear feature of neuronal dendrite branching pattern could be taken. 3D features were clearly observed by oblique illumination. Furthermore, 3D array and shape of zebra fish teeth was clearly distinguished. A novel combination of two channel oblique illumination and z-stack imaging process increased depth of field and optimized contrast, which has a potential to be further applied in the field of neuroscience, hard tissue biology, and analysis of small organic structures such as ear ossicles and zebra fish teeth.

Incremental EM algorithm with multiresolution kd-trees and cluster validation and its application to image segmentation (다중해상도 kd-트리와 클러스터 유효성을 이용한 점증적 EM 알고리즘과 이의 영상 분할에의 적용)

  • Lee, Kyoung-Mi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.523-528
    • /
    • 2015
  • In this paper, we propose a new multiresolutional and dynamic approach of the EM algorithm. EM is a very popular and powerful clustering algorithm. EM, however, has problems that indexes multiresolution data and requires a priori information on a proper number of clusters in many applications, To solve such problems, the proposed EM algorithm can impose a multiresolution kd-tree structure in the E-step and allocates a cluster based on sequential data. To validate clusters, we use a merge criteria for cluster merging. We demonstrate the proposed EM algorithm outperforms for texture image segmentation.

A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography (한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법)

  • Kwon, Ju-Won;Kang, Ho-Kyung;Ro, Yong-Man;Kim, Sung-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.

Binarization of number plate Image with a shadow (그림자가 있는 차량 번호판의 이진화)

  • Seo, Byung-Hoon;Kim, Byeong-Man;Moon, Chang-Bae;Shin, Yoon-Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.1-13
    • /
    • 2008
  • In this paper, we propose a method to solve a problem in binarizing the rear number plate image captured by a camera on a moving vehicle. An image may be shadowed by the cavernous structure of the rear side of a moving vehicle and it makes us hard to get a high quality of binary image. Therefore, we first detect a shadow edge and then divide an image into the shadow part and non-shadow part by the edge. Finally, the binary image is obtained by binarizing each part and merging them In this paper, we do comparative work on a group of binarization methods including our method, the method suggested by Zheng, the method using block binarization, and the method using labeling. The result shows that our method achieves better performance than others in most cases.

  • PDF

Object Detection Method in Sea Environment Using Fast Region Merge Algorithm (해양환경에서 고속 영역 병합 알고리즘을 이용한 물표 탐지 기법)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.610-616
    • /
    • 2012
  • In this paper, we present a method to detect an object such as ship, rock and buoy from sea IR image for the safety navigation. To this end, we do the image smoothing first and the apply watershed algorithm to segment image into subregions. Since watershed algorithm almost always produces over-segmented regions, it requires posterior merging process to get meaningful segmented regions. We propose an efficient merger algorithm that requires only two times of direct access to the pixels regardless of the number of regions. Also by analyzing IR image obtained from sea environments, we could find out that most horizontal edge come out from object regions. For the given input IR image we extract horizontal edge and eliminate isolated edges produced from background and noises by adopting morphological operator. Among the segmented regions, the regions that have horizontal edges are extracted as final results. Experimental results show the adequacy of the proposed method.

Superpixel Segmentation Scheme Using Image Complexity (영상의 복잡도를 고려한 슈퍼픽셀 분할 방법)

  • Park, Sanghyun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.85-92
    • /
    • 2018
  • When using complicated image processing algorithms, we use superpixels to reduce computational complexity. Superpixel segmentation is a method of grouping pixels having similar characteristics into one group. Since superpixel is used as a preprocessing of image processing, it should be generated quickly, and the edge components of the image should be well preserved. In this paper, we propose a method of generating superpixels with a small amount of computation while preserving edge components well. In the proposed method, superpixels of an image are generated by using the existing k-mean method, and similar superpixels among the generated superpixels are merged to make final superpixels. When merging superpixels, the similarity is calculated only for superpixels. Therefore, the amount of computation is maintained small. It is shown by experimental results that the superpixel images produced by the proposed method are conserving edge information of the original image better than those produced by the existing method.

Binarization Method of Night Illumination Image with Low Information Loss Using Fuzzy Logic (퍼지논리를 이용하여 정보손실이 적은 야간조명 영상의 이진화 방법 연구)

  • Lee, Ho Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.540-546
    • /
    • 2019
  • This study suggests a binarization method that minimizes information loss for night illumination images. The object of the night illumination image is an image which is not focused due to the influence of illumination and is not identifiable. Also, the image has a brightness area in only a part of the brightness histogram. So the existing simple binarization method is hard to get good results. The proposed binarization method uses image segmentation method and image merging method. In the stepwise divided blocks, we divide into two regions using the triangular type of fuzzy logic. The value 0 of the membership degree is binarized at the present step, and the value of the membership degree 1 is binarized after the next step. Experimental results show that night illumination images with minimal loss of information can be obtained in a dark area brightness range.