• 제목/요약/키워드: Image matching point

검색결과 352건 처리시간 0.022초

The Comparison of the SIFT Image Descriptor by Contrast Enhancement Algorithms with Various Types of High-resolution Satellite Imagery

  • Choi, Jaw-Wan;Kim, Dae-Sung;Kim, Yong-Min;Han, Dong-Yeob;Kim, Yong-Il
    • 대한원격탐사학회지
    • /
    • 제26권3호
    • /
    • pp.325-333
    • /
    • 2010
  • Image registration involves overlapping images of an identical region and assigning the data into one coordinate system. Image registration has proved important in remote sensing, enabling registered satellite imagery to be used in various applications such as image fusion, change detection and the generation of digital maps. The image descriptor, which extracts matching points from each image, is necessary for automatic registration of remotely sensed data. Using contrast enhancement algorithms such as histogram equalization and image stretching, the normalized data are applied to the image descriptor. Drawing on the different spectral characteristics of high resolution satellite imagery based on sensor type and acquisition date, the applied normalization method can be used to change the results of matching interest point descriptors. In this paper, the matching points by scale invariant feature transformation (SIFT) are extracted using various contrast enhancement algorithms and injection of Gaussian noise. The results of the extracted matching points are compared with the number of correct matching points and matching rates for each point.

SIFT를 이용한 내시경 영상에서의 특징점 추출 (Feature Extraction for Endoscopic Image by using the Scale Invariant Feature Transform(SIFT))

  • 오장석;김호철;김형률;구자민;김민기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.6-8
    • /
    • 2005
  • Study that uses geometrical information in computer vision is lively. Problem that should be preceded is matching problem before studying. Feature point should be extracted for well matching. There are a lot of methods that extract feature point from former days are studied. Because problem does not exist algorithm that is applied for all images, it is a hot water. Specially, it is not easy to find feature point in endoscope image. The big problem can not decide easily a point that is predicted feature point as can know even if see endoscope image as eyes. Also, accuracy of matching problem can be decided after number of feature points is enough and also distributed on whole image. In this paper studied algorithm that can apply to endoscope image. SIFT method displayed excellent performance when compared with alternative way (Affine invariant point detector etc.) in general image but SIFT parameter that used in general image can't apply to endoscope image. The gual of this paper is abstraction of feature point on endoscope image that controlled by contrast threshold and curvature threshold among the parameters for applying SIFT method on endoscope image. Studied about method that feature points can have good distribution and control number of feature point than traditional alternative way by controlling the parameters on experiment result.

  • PDF

Fast landmark matching algorithm using moving guide-line image

  • Seo Seok-Bae;Kang Chi-Ho;Ahn Sang-Il;Choi Hae-Jin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.208-211
    • /
    • 2004
  • Landmark matching is one of an important algorithm for navigation of satellite images. This paper proposes a fast landmark matching algorithm using a MGLI (Moving Guide-Line Image). For searching the matched point between the landmark chip and a part of image, correlation matrix is used generally, but the full-sized correlation matrix has a drawback requiring plenty of time for matching point calculation. MGLI includes thick lines for fast calculation of correlation matrix. In the MGLI, width of the thick lines should be determined by satellite position changes and navigation error range. For the fast landmark matching, the MGLI provides guided line for a landmark chip we want to match, so that the proposed method should reduce candidate areas for correlation matrix calculation. This paper will show how much time is reduced in the proposed fast landmark matching algorithm compared to general ones.

  • PDF

A Fast Image Matching Method for Oblique Video Captured with UAV Platform

  • Byun, Young Gi;Kim, Dae Sung
    • 한국측량학회지
    • /
    • 제38권2호
    • /
    • pp.165-172
    • /
    • 2020
  • There is growing interest in Vision-based video image matching owing to the constantly developing technology of unmanned-based systems. The purpose of this paper is the development of a fast and effective matching technique for the UAV oblique video image. We first extracted initial matching points using NCC (Normalized Cross-Correlation) algorithm and improved the computational efficiency of NCC algorithm using integral image. Furthermore, we developed a triangulation-based outlier removal algorithm to extract more robust matching points among the initial matching points. In order to evaluate the performance of the propose method, our method was quantitatively compared with existing image matching approaches. Experimental results demonstrated that the proposed method can process 2.57 frames per second for video image matching and is up to 4 times faster than existing methods. The proposed method therefore has a good potential for the various video-based applications that requires image matching as a pre-processing.

Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식 (Object Recognition Using Hausdorff Distance and Image Matching Algorithm)

  • 김동기;이완재;강이석
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.

A Robust Fingerprint Matching System Using Orientation Features

  • Kumar, Ravinder;Chandra, Pravin;Hanmandlu, Madasu
    • Journal of Information Processing Systems
    • /
    • 제12권1호
    • /
    • pp.83-99
    • /
    • 2016
  • The latest research on the image-based fingerprint matching approaches indicates that they are less complex than the minutiae-based approaches when it comes to dealing with low quality images. Most of the approaches in the literature are not robust to fingerprint rotation and translation. In this paper, we develop a robust fingerprint matching system by extracting the circular region of interest (ROI) of a radius of 50 pixels centered at the core point. Maximizing their orientation correlation aligns two fingerprints that are to be matched. The modified Euclidean distance computed between the extracted orientation features of the sample and query images is used for matching. Extensive experiments were conducted over four benchmark fingerprint datasets of FVC2002 and two other proprietary databases of RFVC 2002 and the AITDB. The experimental results show the superiority of our proposed method over the well-known image-based approaches in the literature.

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

INTERACTIVE FEATURE EXTRACTION FOR IMAGE REGISTRATION

  • Kim Jun-chul;Lee Young-ran;Shin Sung-woong;Kim Kyung-ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.641-644
    • /
    • 2005
  • This paper introduces an Interactive Feature Extraction (!FE) approach for the registration of satellite imagery by matching extracted point and line features. !FE method contains both point extraction by cross-correlation matching of singular points and line extraction by Hough transform. The purpose of this study is to minimize user's intervention in feature extraction and easily apply the extracted features for image registration. Experiments with these imagery dataset proved the feasibility and the efficiency of the suggested method.

  • PDF

다항식비례모형-영상정합 기법을 활용한 수치고도모형 제작 (RFM-based Image Matching for Digital Elevation Model)

  • 손홍규;박정환;최종현;박효근
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.209-214
    • /
    • 2004
  • This paper presents a RFM-based image matching algorithm which put constraints on the search space through the object-space approach. Also, the detail procedure of generating 3-D surface models from the RFM is introduced as an end-user point of view. The proposed algorithm provides the PML (Piecewise Matching Line) for image matching and reduces the search space to within the confined line-shape area.

  • PDF

Updating Smartphone's Exterior Orientation Parameters by Image-based Localization Method Using Geo-tagged Image Datasets and 3D Point Cloud as References

  • Wang, Ying Hsuan;Hong, Seunghwan;Bae, Junsu;Choi, Yoonjo;Sohn, Hong-Gyoo
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.331-341
    • /
    • 2019
  • With the popularity of sensor-rich environments, smartphones have become one of the major platforms for obtaining and sharing information. Since it is difficult to utilize GNSS (Global Navigation Satellite System) inside the area with many buildings, the localization of smartphone in this case is considered as a challenging task. To resolve problem of localization using smartphone a four step image-based localization method and procedure is proposed. To improve the localization accuracy of smartphone datasets, MMS (Mobile Mapping System) and Google Street View were utilized. In our approach first, the searching for candidate matching image is performed by the query image of smartphone's using GNSS observation. Second, the SURF (Speed-Up Robust Features) image matching between the smartphone image and reference dataset is done and the wrong matching points are eliminated. Third, the geometric transformation is performed using the matching points with 2D affine transformation. Finally, the smartphone location and attitude estimation are done by PnP (Perspective-n-Point) algorithm. The location of smartphone GNSS observation is improved from the original 10.204m to a mean error of 3.575m. The attitude estimation is lower than 25 degrees from the 92.4% of the adjsuted images with an average of 5.1973 degrees.