• Title/Summary/Keyword: Image flip

Search Result 56, Processing Time 0.028 seconds

Optimization of the Flip Angle and Scan Timing in Hepatobiliary Phase Imaging Using T1-Weighted, CAIPIRINHA GRE Imaging

  • Kim, Jeongjae;Kim, Bong Soo;Lee, Jeong Sub;Woo, Seung Tae;Choi, Guk Myung;Kim, Seung Hyoung;Lee, Ho Kyu;Lee, Mu Sook;Lee, Kyung Ryeol;Park, Joon Hyuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: This study was designed to optimize the flip angle (FA) and scan timing of the hepatobiliary phase (HBP) using the 3D T1-weighted, gradient-echo (GRE) imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) technique on gadoxetic acid-enhanced 3T liver MR imaging. Materials and Methods: Sixty-two patients who underwent gadoxetic acid-enhanced 3T liver MR imaging were included in this study. Four 3D T1-weighted GRE imaging studies using the CAIPIRINHA technique and FAs of $9^{\circ}$ and $13^{\circ}$ were acquired during HBP at 15 and 20 min after intravenous injection of gadoxetic acid. Two abdominal radiologists, who were blinded to the FA and the timing of image acquisition, assessed the sharpness of liver edge, hepatic vessel clarity, lesion conspicuity, artifact severity, and overall image quality using a five-point scale. Quantitative analysis was performed by another radiologist to estimate the relative liver enhancement (RLE) and the signal-to-noise ratio (SNR). Statistical analyses were performed using the Wilcoxon signed rank test and one-way analysis of variance. Results: The scores of the HBP with an FA of $13^{\circ}$ during the same delayed time were significantly higher than those of the HBP with an FA of $9^{\circ}$ in all the assessment items (P < 0.01). In terms of the delay time, images at the same FA obtained with a 20-min-HBP showed better quality than those obtained with a 15-min-HBP. There was no significant difference in qualitative scores between the 20-min-HBP and the 15-min-HBP images in the non-liver cirrhosis (LC) group except for the hepatic vessel clarity score with $9^{\circ}$ FA. In the quantitative analysis, a statistically significant difference was found in the degree of RLE in the four HBP images (P = 0.012). However, in the subgroup analysis, no significant difference in RLE was found in the four HBP images in either the LC or the non-LC groups. The SNR did not differ significantly in the four HBP images. In the subgroup analysis, 20-min-HBP imaging with a $13^{\circ}$ FA showed the highest SNR value in the LC-group, whereas 15-min-HBP imaging with a $13^{\circ}$ FA showed the best value of SNR in the non-LC group. Conclusion: The use of a moderately high FA improves the image quality and lesion conspicuity on 3D, T1-weighted GRE imaging using the CAIPIRINHA technique on gadoxetic acid, 3T liver MR imaging. In patients with normal liver function, the 15-min-HBP with a $13^{\circ}$ FA represents a feasible option without a significant decrease in image quality.

Comparative study of data augmentation methods for fake audio detection (음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구)

  • KwanYeol Park;Il-Youp Kwak
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • The data augmentation technique is effectively used to solve the problem of overfitting the model by allowing the training dataset to be viewed from various perspectives. In addition to image augmentation techniques such as rotation, cropping, horizontal flip, and vertical flip, occlusion-based data augmentation methods such as Cutmix and Cutout have been proposed. For models based on speech data, it is possible to use an occlusion-based data-based augmentation technique after converting a 1D speech signal into a 2D spectrogram. In particular, SpecAugment is an occlusion-based augmentation technique for speech spectrograms. In this study, we intend to compare and study data augmentation techniques that can be used in the problem of false-voice detection. Using data from the ASVspoof2017 and ASVspoof2019 competitions held to detect fake audio, a dataset applied with Cutout, Cutmix, and SpecAugment, an occlusion-based data augmentation method, was trained through an LCNN model. All three augmentation techniques, Cutout, Cutmix, and SpecAugment, generally improved the performance of the model. In ASVspoof2017, Cutmix, in ASVspoof2019 LA, Mixup, and in ASVspoof2019 PA, SpecAugment showed the best performance. In addition, increasing the number of masks for SpecAugment helps to improve performance. In conclusion, it is understood that the appropriate augmentation technique differs depending on the situation and data.

Simulation and Measurement of Signal Intensity for Various Tissues near Bone Interface in 2D and 3D Neurological MR Images (2차원과 3차원 신경계 자기공명영상에서 뼈 주위에 있는 여러 조직의 신호세기 계산 및 측정)

  • Yoo, Done-Sik
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 1999
  • Purpose: To simulate and measure the signal intensity of various tissues near bone interface in 2D and 3D neurological MR images. Materials and Methods: In neurological proton density (PD) weighted images, every component in the head including cerebrospinal fluid (CSF), muscle and scalp, with the exception of bone, are visualised. It is possible to acquire images in 2D or 3D. A 2D fast spin-echo (FSE) sequence is chosen for the 2D acquisition and a 3D gradient-echo (GE) sequence is chosen for the 3D acquisition. To find out the signal intensities of CSF, muscle and fat (or scalp) for the 2D spin-echo(SE) and 3D gradient-echo (GE) imaging sequences, the theoretical signal intensities for 2D SE and 3D GE were calculated. For the 2D fast spin-echo (FSE) sequence, to produce the PD weighted image, long TR (4000 ms) and short TE$_{eff}$ (22 ms) were employed. For the 3D GE sequence, low flip angle (8$^{\circ}$) with short TR (35 ms) and short TE (3 ms) was used to produce the PD weighted contrast. Results: The 2D FSE sequence has CSF, muscle and scalp with superior image contrast and SNR of 39 - 57 while the 3D GE sequence has CSF, muscle and scalp with broadly similar image contrast and SNR of 26 - 33. SNR in the FSE image were better than those in the GE image and the skull edges appeared very clearly in the FSE image due to the edge enhancement effect in the FSE sequence. Furthermore, the contrast between CSF, muscle and scalp in the 2D FSE image was significantly better than in the 3D GE image, due to the strong signal intensities (or SNR) from CSF, muscle and scalp and enhanced edges of CSF. Conclusion: The signal intensity of various tissues near bone interface in neurological MR images has been simulated and measured. Both the simulation and imaging of the 2D SE and 3D GE sequences have CSF, fat and muscle with broadly similar image intensity and SNR's and have succeeded in getting all tissues about the same signal. However, in the 2D FSE sequence, image contrast between CSF, muscle and scalp was good and SNR was relatively high, imaging time was relatively short.

  • PDF

MR Angiography with Simultaneous Data Acquisition of Arteries and Veins(SAAV) Method and Artery-Vein Color Mapping in 0.3T MRI System (0.3T MRI 시스템에서의 동.정맥 동시 획득을 위한 자기공명 혈류 영상 기법(SAAV)과 동.정맥 color mapping)

  • 조종운;조지연;서성만;은충기;문치웅
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.275-280
    • /
    • 2003
  • The method of simultaneous data acquisition of arteries and veins(SAAV) was suggested to obtain MR angiography of arteries and veins at 0.3T low filed MRI system (Magfinder, AlLab. Korea). Two separated artery- and vein-images were put together using AVCM(Artery-Vein Color Mapping) algorithm and presented in the same image. In this study, artery- and vein-separated angiograms of volunteer's neck were obtained. Two dimensioal blood-enhanced images wre sequentially obtained using SAAV pulse sequence based on time-of-flight(TOF) method with flow compensation. Imaging parameters were TR/TE=70/12msec. FOV=230mm, slice thickness = 3mm, flip angle=90$^{\circ}$, matrix size=256${\times}$256${\times}$64mm. TSat TH/SPA=15/20mm, Ts_v=10msec and Ts_a=40ms. 3D MRA images were reconstructed using the maximum intensity projection(MIP) and the artery-vein color mapping(AVCM) algorithm. This study showed good possibility of clinical applications of MRA in 0.3T which provides valuable diagnostic information of clinical vascular diseases.

A Study on the Qualty Evaluation of the Turbo Factor of the SPACE(Sampling Perfection with Application optimized Contrast using different flip-angle Evolutions) 3D T2 Technique during Olfactory Bulb MRI Examination (Olfactory bulb MRI 검사 시 SPACE 3D T2 기법의 Turbo factor 변화에 따른 화질 평가에 관한 연구)

  • Lee, Jun-Kyu;Roh, Tae-Kwan;Jo, Yong-Keun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2022
  • This study aims to find out the change in diagnostic capability and image quality compared to 2D TSE T2 after examination the Turbo Factor value of the SPACE 3D T2 technique during Olfactory Bulb examination. As a result of the study, qualitative and quantitative analysis, it was found that there was a statistically significant difference in the SPACE 3D T2 technique compared to the 2D TSE T2 technique, and the conclusion

Usefulness of Dual-Echo in Steady State (DESS) Image in Chondromalacia of Knee Joint: Comparison of DESS and Turbo Spin-Echo MR Images (슬관절 연골 연화증의 진단에서의 Dual Echo in Steady State (DESS) 영상의 유용성 : 급속 스핀에코 자기공명 영상과 비교)

  • 윤삼현;하두회
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.66-72
    • /
    • 1999
  • Purpose : To evaluate the usefulness of Dual Echo in Steady State(DESS) image in the diagnosis of chondromalacia of the knee compared with turbo spin-echo MR images Materials and Methods : We included 26 patients with chondromalacia of the knee. MR imaging was obtained with a 1.5T imager. Sagittal and coronal double echo T2 weighted images(TR/TE 3000-4200/16-96msec, FOV $140-160{\times}140-160mm$, matrix size $180{\times}256$, slice thickness 4.0mm, interslice gap 0.5mm), and sagittal DESS image(TR/TE 25.4/9.0msec, flip angle $35-45^{\circ}$, FOV $150-160{\times}150-160mm,{\;}matrix{\;}size{\;}192{\times}256$, effective slice thickness 1.5mm) were obtained. Cartilage lesions were staged according to a modified scheme proposed by Outerbirdge: grade 0, normal; grade 1, softening or/and swelling; grade 2, mild surface fibrillation or/and less than 50% of cartilage thickness; grade 3, severe surface fibrillation or/and loss of more than 50% of cartilage thickness but without exposure of subchondral bone; and grade 4, complete loss of cartilage with subchondral bone exposure. Gradings were determined by two readers with consensus, and patellofemoral, medial and lateral tibiofemoral compartments were evaluated. Results : Arthroscopic findings revealed grade 1 in seven cases, grade 2 in 21 cases, grade 3 in six cases, and grade 4 in 18 cases. Sensitivity of turbo spin-echo MR image was as follows; 0%, 14%, 0%, 61% in each grade, and sensitivity of DESS image was as follows; 0%, 33%, 50%, 67%, in each grade(p=0.001). In the detection of chondromalacic lesions regardless of gradings, sensitivity, specificity and accuracy of conventional MR image were 59.6% 88.6% 78.8%, and of DESS image, 73.1% 88.4%, 82.2%(p=0.007). Conclusion : For chondromalacia of knee joints, DESS images showed higher sensitivity than turbo spin-echo MR images. Therefore, DESS images will be helpful for diagnosis of chondromalacia of knee joints.

  • PDF

The Synthesis and MR Properties of New Macromolecular MR Contrast Agent (새로운 거대분자 MR 조영제의 합성 및 MR 특성에 관한 연구)

  • 장용민;장영환;황문정;박현정;전경녀;이종민;배경수;강봉석
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Purpose : To evaluate the NMR relaxation properties and imaging characteristics of tissue-specificity for a newly developed macromolecular MR agent. Materials and methods : Phthalocyanine (PC) was chelated with paramagnetic ion, Mn.2.01g (5.2 mmol) of Phthalocyanine was mixed with 0.37g (1.4 mmol) of Mn chloride at $310^{\circ}C$ for 36 hours and then purified by chromatography (CHC13/CH3OH 98/2 v/v, Rf, 0.76) to obtain 1.04g (46%) of MnPC (molecular weight= 2000d). The $T1}T2$ relaxivity of MnPC was measured in 1.5T(64 MHz) MR using 0.1 mM MnPC. The MR image characteristics of MnPC was evaluated using spin-echo (TR/TE=500/14 msec) and gradient-echo (FLASH) (TR/TE=80/4 msec, flip angle=60) techniques in 1.57 MR scanner. The images of rabbit liver were obtained every 10 minutes up to 4 hours. To study the effect of concentration on image, 20 mM, 50 mM, 100 mM of MnPC were tested. Results : The relaxivities of MnPC at 1.5T(64MHz) were Rl=7.28 $mM^{-1}S^{-1},{\;}R2=55.56mM^{-1}S^{-1}$. Compared to the values of Gd-DTPA (Rl[=4.8 $mM^{-1}S^{-1})$], R2[=5.2 $mM^{-1}S^{-1}])$]), both T1/T2 relaxivities of MnPC were higher than those of Gd-DTPA. For both of SE and FLASH techniques, the contrast enhancement reached maximum at 10 minutes after bolus injection and the enhancement continued for more than 2 hours. When compared with small molecular weight liver agents such as Gd-EOB-DTPA, Gd-BOPTA and MnDPDP, MnPC was characterized by more prolonged enhancement time. The time course of MR images also revealed biliary excretion of MnPC. Conclusion : We developed a new macromolecular MR agent, MnPC. The relaxivities of MnPC were higher than those of small molecular weight Gd-chelate. Hepatic uptake and biliary excretion of MnPC suggests that this agent is a new liver-specific MR agent.

  • PDF

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.

Flow Effects on Tailored RF Gradient Echo (TRFGE) Magnetic Resonance Imaging : In-flow and In-Plane Flow Effect (Tailored RF 경자사계방향 (TRFGE} 자기공명영상(MRI)에서 유체에 의한 영상신호 변화 : 유체유입효과와 영상면내를 흐르는 유체의 효과에 대하여)

  • Mun, Chi-Ung;Kim, Sang-Tae;No, Yong-Man;Im, Tae-Hwan;Jo, Jang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.243-251
    • /
    • 1997
  • In this paper, we have reported two interesting flow effects arising in the TRFGE sequence using water flow phantom. First, we have shown that the TRFGE sequence is indeed not affected by "in-flow" effect from the unsaturated spins flowing into the imaging slice. Second, the enhancement of "in-plane flow" signal in the readout gradient direction was observed when the TRFGE sequence was used without flow compensation. These two results have many interesting applications in MR imaging other than fMRI. Results obtained were also compared with the results obtained by the conventional gradient echo(CGE) imaging. Experiments were performed at 4.7T MRI/S animal system (Biospec, BRUKER, Switzerland). A cylindrical phantom was made using acryl and a vinyl tube was inserted at the center(Fig. 1). The whole cylinder was filled with water doped with $MnCl_2$ and the center tube was filled with saline which flows in parallel to the main magnetic field along the tube. Tailored RF pulse was designed to have quadratic ($z^2$) phase distribution in slice direction(z). Imaging parameters were TR/TE = 55~85/10msec, flip angle = $30^{\circ}$, slice thickness = 2mm, matrix size = 256${\times}$256, and FOV= 10cm. In-flow effect : Axial images were obtained with and without flow using the CGE and TRFGE sequences, respectively. The flow direction was perpendicular to the image slice. In-plane flow : Sagittal images were obtained with and without flow using the TRGE sequence. The readout gradient was applied in parallel to the flow direction. We have observed that the "in-flow" effect did not affect the TRFGE image, while "in-plane flow" running along the readout gradient direction enhanced the signal in the TRFGE sequence when flow compensation gradient scheme was not used.

  • PDF

Clinical Utility of Turbo Contrase-Enhanced MR Angiography for the Major Branches of the Aortic Arch (대동맥궁 주요 분지들의 고속 조영증강 자기공명혈관조영술의 임상적 유용성)

  • Su Ok Seong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • Purpose : To assess the clinical utility of turbo contrast-enhanced magnetic resonance angiography(CE MRA) in the evaluation of the aortic arch and its major branches and to compare the image quality of CE MRA among different coils used. Materials and Methods : Turbo three-phase dynamic CE MRA encompassing aortic arch and its major branches was prospectively performed after manual bolus IV injection of contrast material in 29 patients with suspected cerebrovascular diseases at 1.0T MR unit. the raw data were obtained with 3-D FISH sequence (TR 5.4ms, TE 2.3ms, flip angle 30, slab thickness 80nm, effective slice thickness 4.0mm, matrix size $100{\times}256$, FOV 280mm). Total data acquisition time was 4. to 60 seconds. We subjectively evaluated the imge quality with three-rating scheme : "good" for unequivocal normal finding, "fair" for relatively satisfactory quality to diagnose 'normal' despite intravascular low signal, and "poor" for equivocal diagnosis or non-visualization of the origin or segment of the vessels due to low signal or artifacts which needs catheter angiography. At the level of the carotid bifurcation, it was compared with conventional 2D-TOF MRA image. Overall image quality was also compared visually and quantitatively by measuring signal-to-noise ratios (SNRs) of the ascending aorta, the innominate artery and both common carotid arteries among the three different coils used(CP body array(n=12), CP neck array(n=9), and head-and-neck(n=8). Results : Demonstration of the aortic arch and its major branches was rated as "good" in 55% (16/29) and "fair" in 34%(10/29). At the level of the carotid bifurcation, image quality of turbo CE MRA was same as or better than conventional 2D-TOF MRA in 65% (17/26). Overall image quality and SNR were significantlygreater with CP body array coil than with CP neck array or head-and-neck coil. Conclusions : Turbo CE MRA can be used as a screening exam in the evaluation of the major branches of the aortic arch from their origin to the skull base. Overall imagequality appears to be better with CP body array coil than with CP neck array coil or head-and-neck coil.

  • PDF