• 제목/요약/키워드: Image feature points

검색결과 537건 처리시간 0.025초

특징점 추적을 통한 다수 영상의 고속 스티칭 기법 (Fast Stitching Algorithm by using Feature Tracking)

  • 박시영;김종호;유지상
    • 방송공학회논문지
    • /
    • 제20권5호
    • /
    • pp.728-737
    • /
    • 2015
  • 스티칭 기법은 여러 영상에서 추출한 특징점의 디스크립터를 생성하고, 특징점들간의 정합 과정을 통해 하나의 영상으로 만드는 것이다. 각각의 특징점은 128 차원의 정보를 가지고 있고, 특징점의 개수가 증가 할수록 데이터 처리 시간이 증가하게 된다. 본 논문에서는 비디오 영상을 입력 했을 때 고속 파노라마 생성을 위한 특징점 추출 및 정합 기법을 제안한다. 빠른 속도로 특징점 추출을 위해서 FAST(Features from Accelerated Segment Test) 기법을 사용한다. 특징점 정합과정은 기존의 방법과는 다른 새로운 방법을 제안한다. Mean shift를 통해 특징점이 포함된 영역을 추적하여 벡터(vector)를 구하고 이 벡터를 사용하여 추출한 특징점들을 정합하는데 사용한다. 마지막으로 이상점(outlier)을 제거하기 위해 RANSAC(RANdom Sample Consensus) 기법을 사용한다. 입력된 두 영상의 호모그래피(homography) 변환 행렬을 구하여 하나의 파노라마 영상을 생성한다. 실험을 통해 제안하는 기법이 기존의 기법보다 속도가 향상되는 것을 확인하였다.

참조 이미지를 이용한 과장된 카투닝 (Exaggerated Cartooning using a Reference Image)

  • 한명훈;서상현;류승택;윤경현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제17권1호
    • /
    • pp.33-38
    • /
    • 2011
  • 본 논문에서는 입력 대상 이미지를 만화와 같은 영상으로 만드는 방법으로 참조 이미지를 사용하는 방법을 제안한다. 본 논문은 미리 정의된 참조 이미지를 사용하여 대상을 변형한다. 이를 위하여 통적 외형 모델(AAM)을 사용하여 대상 이미지로부터 특징점을 추출하고, 추출된 특징점과 선택된 참조 이미지의 특징점을 기준으로 대상 이미지를 와핑(warping)한다. 변형된 대상 이미지를 추상화(abstraction)한 뒤, 에지를 추출하고 명도 영역을 양자화(quantization)하는 것으로 만화와 같은 단순화된 결과 이미지를 생성한다. 과장되어 표현된 만화 스타일 이미지를 참조 이미지로 사용하는 것으로 만화의 두 주요한 특징인 과장된 표현과 단순화가 같이 적용된 결과 이미지틀 생성할 수 있다. 본 논문의 방법은 대상 이미지의 변형 정도를 조절하거나 변형에 사용할 참조 이미지를 바꾸는 것으로 다양하게 표현된 결과를 생성하는 것이 가능하다.

호모그래피와 추적 알고리즘을 이용한 구면 파노라마 영상 생성 방법 (Spherical Panorama Image Generation Method using Homography and Tracking Algorithm)

  • 아나르;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제17권3호
    • /
    • pp.42-52
    • /
    • 2017
  • 파노라마 영상은 여러 시점에서 촬영한 영상들을 대응점들의 정합을 통해 합성하여 얻은 단일 영상을 말한다. 기존의 파노라마 영상 생성 방법들은 대응점들을 구할 때 각 영상에서 지역적 불변 특징점을 추출하여 서술자를 생성하고 매칭 알고리즘을 사용한다. 동영상의 경우, 프레임 수가 많아 기존의 방법으로 파노라마 영상을 생성하는 것이 상당한 시간을 소비하고 불필요한 계산을 한다. 본 논문에서는 동영상을 입력 받아 구면 파노라마 영상을 효과적으로 생성하는 기법을 제안한다. 동영상의 프레임 간의 변화가 지역적으로 크지 않으며 연속적이라는 전제 조건으로 반복성 및 계산속도가 높은 FAST 알고리즘을 사용하여 특징점들을 추출하고, Lucas-Kanade 알고리즘을 통해 각 특징점들을 추적하여 그 주변에서 대응점을 찾는다. 모든 영상에 대해서 호모그래피를 계산하면 가운데 영상을 중심으로 호모그래피를 변경하고 영상을 와핑하여 평면 파노라마 영상을 얻는다. 마지막으로 구면 좌표계 역변환식을 통해 구면 파노라마 영상을 변환하여 얻는다. 실험을 통하여 제안하는 방법이 기존의 방법들보다 파노라마 영상을 빠르고 효과적으로 생성하는 것을 확인하였다.

속도 가변을 통한 영상교시 기반 주행 알고리듬 성능 향상 (Improvement of Visual Path Following through Velocity Variation)

  • 최이삭;하종은
    • 제어로봇시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.375-381
    • /
    • 2011
  • This paper deals with the improvement of visual path following through velocity variation according to the coordinate of feature points. Visual path follow first teaches driving path by selecting milestone images then follows the route by comparing the milestone image and current image. We follow the visual path following algorithm of Chen and Birchfield [8]. In [8], they use fixed translational and rotational velocity. We propose an algorithm that uses different translational velocity according to the driving condition. Translational velocity is adjusted according to the variation of the coordinate of feature points on image. Experimental results including diverse indoor cases show the feasibility of the proposed algorithm.

외란관측기를 이용한 새로운 시각구동방법 (A Novel Visual Servoing Method involving Disturbance Observer)

  • 이준수;서일홍;유범재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2312-2314
    • /
    • 1998
  • To improve the visual servoing performance, several strategies were proposed in the past such as redundant feature points, using a point with different height and weighted selection of image features. The performance of these visual servoing methods depends on the configuration between the camera and object. And redundant feature points require much computation efforts. This paper proposes the visual servoing m based on the disturbance observer, which compe the upper off-diagonal component of image fe Jacobian to be null. The performance indices su sensitivity for a measure of richness, sensitiv the control to noise, and controllability are sho improved when the image feature Jacobian is giv a block diagonal matrix. Computer simulation carried out for a PUMA560 robot and show results to verify the effectiveness of the pro method.

  • PDF

이미지 유사도를 이용한 와인라벨 인식 시스템 (Wine Label Recognition System using Image Similarity)

  • 정종문;양형정;김수형;이귀상;김선희
    • 한국콘텐츠학회논문지
    • /
    • 제11권5호
    • /
    • pp.125-137
    • /
    • 2011
  • 최근 휴대폰 카메라로 촬영한 영상을 입력으로 사용하는 시스템에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 와인라벨의 문자를 인식한 후, 데이터베이스내의 와인이미지들 중에서 입력 와인라벨 이미지와 유사한 순서대로 사용자에게 보여주는 시스템을 제안한다. 이미지의 유사도 계산을 위해 본 논문에서는 이미지의 각 영역별 대표색상, 텍스트 영역의 텍스트 색상과 배경색상, 그리고 특징점의 분포를 특징으로 사용한다. 이미지의 색상차를 계산하기 위해 RGB색상을 CIE-Lab색상으로 변환하여 사용하고, 특징점은 해리스코너 검출 알고리즘을 사용하여 추출한다. 각 셀의 대표 색상차와 텍스트 색상차 및 배경 색상차는 가중치를 적용하여 색상차 유사도를 계산하고 색상차 유사도와 특징점 분포 유사도를 정규화하여 최종 이미지 유사도를 구한다. 본 논문에서는 입력 이미지와 데이터베이스내의 이미지 간의 유사도를 계산하여 유사도 순으로 사용자에게 검색 결과를 보여줌으로써 검색 결과로부터 다시 최대 유사 와인라벨을 수동으로 찾는 노력을 줄일 수 있다.

특징 강도 정보를 이용한 영상 정합 속도 향상 (Speed-up of Image Matching Using Feature Strength Information)

  • 김태우
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.63-69
    • /
    • 2013
  • 특징 기반 영상 인식 방법은 객체의 특징을 이용하므로 템플릿 정합에 비해 고속으로 수행될 수 있다. 불변 특징 기반의 파노라마 생성은 영상 인식의 한 응용으로서, 두 영상 간의 특징점 정합에 많은 처리 시간이 필요하다. 본 논문에서는 특징 강도 정보를 이용하여 특징점 정합 속도를 향상시키는 방법을 제안한다. SURF 알고리즘으로 특징점들을 추출한 후, 특징 강도 정보를 계산하여 강한 특징점들을 선택하여 특징 정합에 사용한다. 특징 강도가 강한 특징점들은 그렇지 않은 특징점들 보다 더 의미 있다고 볼 수 있다. 실험에서 $320{\times}240$ 크기의 칼라 영상에 대해 제안한 방법은 특징 강도 정보를 사용하지 않았을 때보다 40% 이상 처리 속도의 향상을 보였다.

저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합 (Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments)

  • 황선규;김회율
    • 대한전자공학회논문지SP
    • /
    • 제46권4호
    • /
    • pp.116-123
    • /
    • 2009
  • 서로 다른 시점의 두 영상에서 동일한 점들을 정합하는 특징점 정합은 다양한 영상 처리 분야에서 널리 사용되고 있으며, 최근에는 실시간으로 동작하는 특징점 정합에 대한 요구가 높아지고 있다. 본 논문은 저니키 모멘트 기반의 지역 서술자를 이용하여 특징점을 실시간으로 정합하는 방법을 제안한다. 빠른 모서리 점 검출 방법을 이용하여 입력 영상으로부터 특징점을 추출하고, 각 특징점에서 저니키 모멘트를 이용한 지역 서술자를 생성한다. 저니키 모멘트 기반의 지역 서술자는 특징점 주변의 부분 영상을 적은 차수의 특징 벡터로써 효율적으로 표현하며, 영상의 회전과 밝기 변화에 강인하다. 본 논문에서는 저니키 모멘트 계산을 실시간으로 수행하기 위하여 고정된 크기의 저니키 기저 함수를 미리 계산하여 이를 룩업 테이블에 저장하여 사용한다. 특징점 정합 단계에서는 근사 최근방 이웃(ANN) 방법을 사용하여 초기 정합 결과를 얻고, 이 중 잘못된 정합은 RANSAC 알고리즘을 이용하여 제거함으로써 최종 정합 결과를 얻는다. 실험 결과 제안하는 방법은 다양한 변환이 존재하는 영상에 대하여 실시 간으로 특징점 정합을 수행함을 확인하였다.

위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법 (Improving Matching Performance of SURF Using Color and Relative Position)

  • 이경승;김대훈;노승민;황인준
    • 한국항행학회논문지
    • /
    • 제16권2호
    • /
    • pp.394-400
    • /
    • 2012
  • SURF(Speeded Up Robust Features)는 다양한 상태 변화에 강인한 기술자 추출 방법으로 객체 인식과 같은 분야에서 유용하게 사용되는 알고리즘이다. 이 알고리즘은 대표적인 특징점 추출 알고리즘인 SIFT(Scale Invariant Feature Transform)와 비슷한 성능을 보이면서도 수행 시간이 훨씬 빠르다는 장점이 있다. 하지만 이러한 기술자들은 회전 불변한 특징 보장을 위해서, 추출한 특징점 간의 위치 정보를 고려하지 않는다. 또한, 원본 영상을 흑백 영상으로 변환하여 사용하기 때문에, 원본 이미지의 색상 정보도 이용하지 않는다. 본 논문에서는 특징점들 간의 상대적인 위치 정보 및 색상 정보를 이용하여 SURF 기술자의 정합 성능을 개선하는 방안을 제안한다. 상대적인 위치 정보는 특징점들의 중심을 연결하는 선분과 특징점 중심에서부터 생성되는 orientation 선분 사이의 각을 기반으로 한다. 색상 정보의 경우 각 특징점이 포함하고 있는 영역에 대해 color histogram을 생성하여 사용한다. 실험을 통하여 제안된 기법의 성능 개선을 보인다.

단일 시각방향 영상에서의 기하 불변량의 특성 비교에 관한 연구 (A Study On the Comparison of the Geometric Invariance From A Single-View Image)

  • 이영재;박영태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.639-642
    • /
    • 1999
  • There exist geometrically invariant relations in single-view images under a specific geometrical structure. This invariance may be utilized for 3D object recognition. Two types of invariants are compared in terms of the robustness to the variation of the feature points. Deviation of the invariant relations are measured by adding random noise to the feature point location. Zhu’s invariant requires six points on adjacent planes having two sets of four coplanar points, whereas the Kaist method requires four coplanar points and two non-coplanar points. Experimental results show that the latter method has the advantage in choosing feature points while suffering from weak robustness to the noise.

  • PDF