• Title/Summary/Keyword: Image edge extraction

Search Result 335, Processing Time 0.028 seconds

Robust Skyline Extraction Algorithm For Mountainous Images (산악 영상에서의 지평선 검출 알고리즘)

  • Yang, Sung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Skyline extraction in mountainous images which has been used for navigation of vehicles or micro unmanned air vehicles is very hard to implement because of the complexity of skyline shapes, occlusions by environments, dfficulties to detect precise edges and noises in an image. In spite of these difficulties, skyline extraction is avery important theme that can be applied to the various fields of unmanned vehicles applications. In this paper, we developed a robust skyline extraction algorithm using two-scale canny edge images, topological information and location of the skyline in an image. Two-scale canny edge images are composed of High Scale Canny edge image that satisfies good localization criterion and Low Scale Canny edge image that satisfies good detection criterion. By applying each image to the proper steps of the algorithm, we could obtain good performance to extract skyline in images under complex environments. The performance of the proposed algorithm is proved by experimental results using various images and compared with an existing method.

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

Regional Linear Warping for Image Stitching with Dominant Edge Extraction

  • Yoo, Jisung;Hwang, Sung Soo;Kim, Seong Dae;Ki, Myung Seok;Cha, Jihun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2464-2478
    • /
    • 2013
  • Image stitching techniques produce an image with a wide field-of-view by aligning multiple images with a narrow field-of-view. While conventional algorithms successfully stitch images with a small parallax, structure misalignment may occur when input images contain a large parallax. This paper presents an image stitching algorithm that aligns images with a large parallax by regional linear warping. To this end, input images are first approximated as multiple planar surfaces, and different linear warping is applied to each planar surface. For approximating input images as multiple planar surfaces, the concept of dominant edges is introduced. Dominant edges are defined as conspicuous edges of lines in input images, and extracted dominant edges identify the boundaries of each planar surface. Dominant edge extraction is conducted by detecting distinct changes of local characteristics around strong edge pixels. Experimental results show that the proposed algorithm successfully stitches images with a large parallax without structure misalignment.

Effects of Edge Detection on Least-squares Model-image Fitting Algorithm

  • Wang, Sendo;Tseng, Yi-Hsing;Liou, Yan-Shiou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.159-161
    • /
    • 2003
  • Fitting the projected wire-frame model to the detected edge pixels on images by using least-squares approach, called Least-squares Model-image Fitting (LSMIF), is the key of the Model-based Building Extraction (MBBE). It is implemented by iteratively adjusting the model parameters to minimize the squares sum of distances from the extracted edge pixels to the projected wire-frame. This paper describes a series of experiments and studies on various factors affect the fitting results, including the edge detectors, the weighting rules, the initial value of parameters, and the number of overlapped images. The experimental result is not only helpful to clarify the influences of each factor, but is also able to enhance the robustness of the LSMIF algorithm.

  • PDF

Automatic Extraction of Rescue Requests from Drone Images: Focused on Urban Area Images (드론영상에서 구조요청자 자동추출 방안: 도심지역 촬영영상을 중심으로)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.37-44
    • /
    • 2019
  • In this study, we propose the automatic extraction method of Rescue Requests from Drone Images. A central object is extracted from each image by using central object extraction method[7] before classification. A central object in an images are defined as a set of regions that is lined around center of the image and has significant texture distribution against its surrounding. In this case of artificial objects, edge of straight line is often found, and texture is regular and directive. However, natural object's case is not. Such characteristics are extracted using Edge direction histogram energy and texture Gabor energy. The Edge direction histogram energy calculated based on the direction of only non-circular edges. The texture Gabor energy is calculated based on the 24-dimension Gebor filter bank. Maximum and minimum energy along direction in Gabor filter dictionary is selected. Finally, the extracted rescue requestor object areas using the dominant features of the objects. Through experiments, we obtain accuracy of more than 75% for extraction method using each features.

Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images (위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘)

  • Kim, Jeahee;Lee, Changu;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

Edge Compensation Algorithm by Extracting the Skeletons from the Uplifted Image (융기된 영상의 골격선 추출에 의한 에지 보정 알고리듬)

  • Park, Mi-Jin;Yang, Yeong-Il;Park, Jung-Jo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.675-683
    • /
    • 2001
  • In this paper, we propose the edge compensation algorithm which connects the adjacent edges without losing the information of the skeletons on the edge image. The proposed edge compensation algorithm is composed of succeeding two steps. In the first step, the uplifted image is obtained by uplifting the edge image repeatedly. The next step is to extract the edge image from the uplifted image using the skeleton extraction algorithm. Experimental results show that the proposed method connects the adjacent edges without the distortion of the original edge information compared to the traditional method.

  • PDF

A Study On Watershed Region Extraction Based On Edge Information (에지 정보를 이용한 watershed 영역 추출에 관한 연구)

  • 이원효;조상현;설경호;주동현;김두영
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.449-452
    • /
    • 2003
  • This paper propose a extracting method of the region for image using segmentation and edge information. First propose algorithm extract information using canny edge detector and the image was divided by watershed segmentation. And it extract the mage with edge information by merging region. Finally we compare the proposed method with levelset method. In the result proposed method not only extract the image with accurate region but also reduce operation time.

  • PDF

Shadow Extraction of Urban Area using Building Edge Buffer in Quickbird Image (건물 에지 버퍼를 이용한 Quickbird 영상의 도심지 그림자 추출)

  • Yeom, Jun-Ho;Chang, An-Jin;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.163-171
    • /
    • 2012
  • High resolution satellite images have been used for building and road system analysis, landscape analysis, and ecological assessment for several years. However, in high resolution satellite images, shadows are necessarily cast by manmade objects such as buildings and over-pass bridges. This paper develops the shadow extraction procedures in urban area including various land-use classes, and the extracted shadow areas are evaluated by a manually digitized shadow map. For the shadow extraction, the Canny edge operator and the dilation filter are applied to make building edge buffer area. Also, the object-based segmentation was performed using Gram-Schmitt fusion image, and spectral and spatial parameters are calculated from the segmentation results. Finally, we proposed appropriate parameters and extraction rules for the shadow extraction. The accuracy of the shadow extraction results from the various assessment indices is 80% to 90%.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.