• Title/Summary/Keyword: Image Transformation

Search Result 1,071, Processing Time 0.028 seconds

Robustness Evaluation of Image Watermarking mixed Key and Logo Scheme (키와 로고 방식을 혼합한 이미지 워터마킹의 강인성 평가)

  • Park, Young;Kim, Yoon-Ho;Choi, Se-Ha;Lee, Myong-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.598-601
    • /
    • 2002
  • In this research, robustness of image watermarking mixed Key and Logo scheme was evaluated. A personal ID of a copyrighter was key and watermark was logo image. The standard images of Baboon, Cameraman and Lena were used for experimental images, binary image‘Park’of 32$\times$32 and 64$\times$64 size were used for the watermark image, respectively. for robustness evaluation of the watermark, reconstructive rates of the watermark were obtained from images inserted watermark with image transformation or JPEG lossy compression. The experimental results show that the reconstructive rates of the case of 32$\times$32 watermark was better than the case of the 64$\times$64 watermark; average 5.9%, 13.9%, 6.5%, and 4.2% in the case of scale-down rates, rotational rates, impulse noise power density, and JPEG lossy compression rates, respectively.

  • PDF

Speed Optimization Design of 3D Medical Image Reconstruction System Based on PC (PC 기반의 3차원 의료영상 재구성 시스템의 고속화 설계)

  • Bae, Su-Hyeon;Kim, Seon-Ho;Yu, Seon-Guk
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.189-198
    • /
    • 1998
  • 3D medical image reconstruction techniques are useful to figure out complex 3D structures from the set of 2D sections. In the paper, 3D medical image reconstruction system is constructed under PC environment and programmed based on modular programming by using Visual C++ 4.2. The whole procedures are composed of data preparation, gradient estimation, classification, shading, transformation and ray-casting & compositing. Three speed optimization techniques are used for accelerating 3D medical image reconstruction technique. One is to reduce the rays when cast rays to reconstruct 3D medical image, another is to reduce the voxels to be calculated and the other is to apply early ray termination. To implement 3D medical image reconstruction system based on PC, speed optimization techniques are experimented and applied.

  • PDF

Re-coloring Methods using the HSV Color Space for people with the Red-green Color Vision Deficiency (적록 색각 이상자를 위한 HSV색공간을 이용한 색변환 기법)

  • Kim, Hyun-Ji;Cho, Jae-Young;Ko, Sung-Jea
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.91-101
    • /
    • 2013
  • This paper proposes a new re-coloring method for the people with the red-green color vision deficiency (CVD). These people have difficulty in discriminating the red and green colors since they abnormally perceive the hue and luminance value of the colors. We introduce a color transformation that adjusts the hue and luminance value in HSV color space. The color transformation is determined according to the severity of CVD. Our aim is to maintain the color differences in original image while maintaining the recolored image to be natural to the people with normal color vision. Experimental results show that the proposed method can yield more comprehensible images for the people with red-green CVD while maintaining the naturalness of the recolored images.

Shape Description and Recognition Using the Relative Distance-Curvature Feature Space (상대거리-곡률 특징 공간을 이용한 형태 기술 및 인식)

  • Kim Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.527-534
    • /
    • 2005
  • Rotation and scale variations make it difficult to solve the problem of shape description and recognition because these variations change the location of points composing the shape. However, some geometric Invariant points and the relations among them are not changed by these variations. Therefore, if points in image space depicted with the r-y coordinates system can be transformed into a new coordinates system that are invariant to rotation and scale, the problem of shape description and recognition becomes easier. This paper presents a shape description method via transformation from the image space into the invariant feature space having two axes: representing relative distance from a centroid and contour segment curvature(CSC). The relative distance describes how far a point departs from the centroid, and the CSC represents the degree of fluctuation in a contour segment. After transformation, mesh features were used to describe the shape mapped onto the feature space. Experimental results show that the proposed method is robust to rotation and scale variations.

Image Transformation Logics for Caricature Generation : The Focus on Emotional Form (캐리커처 자동 생성을 위한 이미지 변형 법칙에 관한 연구 - 감성적 형태 중심의 변형 방법 -)

  • Kim, Sung-Kon
    • Science of Emotion and Sensibility
    • /
    • v.12 no.1
    • /
    • pp.129-136
    • /
    • 2009
  • Unlike former researches, this study for developing the caricature generator began observing the methods that other caricature experts have adopted. According to the observation, it seemed that experts tried to exaggerate characteristics of the target shape from other similar objects. When we are saying "This is similar to that," we give salience to their difference among the identical form groups. This study was to find the most similar geometry form to the target shape and then to transform its form through exaggeration. The research scope was restricted to exaggerate the outline shape of two-dimensional looped curve as a caricature form. For this, the author discussed the following: (a) organization method of four kinds of similar geometry form database, (b) search method to find the pertinent similar geometry form, (c) arrangement method for those searched data, and (d) method to exaggerate the target shape. Human faces and cars were selected as research categories to make the database. According to the survey over the transformed results, it was proved its possibility.

  • PDF

Copy-move Forgery Detection Robust to Various Transformation and Degradation Attacks

  • Deng, Jiehang;Yang, Jixiang;Weng, Shaowei;Gu, Guosheng;Li, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4467-4486
    • /
    • 2018
  • Trying to deal with the problem of low robustness of Copy-Move Forgery Detection (CMFD) under various transformation and degradation attacks, a novel CMFD method is proposed in this paper. The main advantages of proposed work include: (1) Discrete Analytical Fourier-Mellin Transform (DAFMT) and Locality Sensitive Hashing (LSH) are combined to extract the block features and detect the potential copy-move pairs; (2) The Euclidian distance is incorporated in the pixel variance to filter out the false potential copy-move pairs in the post-verification step. In addition to extracting the effective features of an image block, the DAMFT has the properties of rotation and scale invariance. Unlike the traditional lexicographic sorting method, LSH is robust to the degradations of Gaussian noise and JEPG compression. Because most of the false copy-move pairs locate closely to each other in the spatial domain or are in the homogeneous regions, the Euclidian distance and pixel variance are employed in the post-verification step. After evaluating the proposed method by the precision-recall-$F_1$ model quantitatively based on the Image Manipulation Dataset (IMD) and Copy-Move Hard Dataset (CMHD), our method outperforms Emam et al.'s and Li et al.'s works in the recall and $F_1$ aspects.

3D Simulation of Thin Film using Contour Analysis of Interference Fringe Image and Interpolation Method (간섭무늬 영상 등고선 해석과 보간법을 이용한 박막의 삼차원 정보 형상화)

  • Kim, Jin-Hyoung;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.8-17
    • /
    • 2012
  • In this paper we proposes a new framework to obtain 3D shape information of thin film rapidly. The conventional equipments based on reflectometry are not suitable for obtaining 3D overall shape information of thin film rapidly since they require more than 30 minutes to measure the absolute thickness for 170 points. The proposed framework is based on an image analysis method that extracts contour lines from interference fringes images using Canny edge detector. The absolute thickness for contour lines are measured and then a height map from the contour lines is obtained by interpolation using Borgefors distance transformation. The extracted height map is visualized using the DirectX 3D terrain rendering method. The proposed framework can provide 3D overall shape information of thin film in about 5 minutes since relatively small number of real measurement for contour lines is required.

Driving Assist System using Semantic Segmentation based on Deep Learning (딥러닝 기반의 의미론적 영상 분할을 이용한 주행 보조 시스템)

  • Kim, Jung-Hwan;Lee, Tae-Min;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.147-153
    • /
    • 2020
  • Conventional lane detection algorithms have problems in that the detection rate is lowered in road environments having a large change in curvature and illumination. The probabilistic Hough transform method has low lane detection rate since it exploits edges and restrictive angles. On the other hand, the method using a sliding window can detect a curved lane as the lane is detected by dividing the image into windows. However, the detection rate of this method is affected by road slopes because it uses affine transformation. In order to detect lanes robustly and avoid obstacles, we propose driving assist system using semantic segmentation based on deep learning. The architecture for segmentation is SegNet based on VGG-16. The semantic image segmentation feature can be used to calculate safety space and predict collisions so that we control a vehicle using adaptive-MPC to avoid objects and keep lanes. Simulation results with CARLA show that the proposed algorithm detects lanes robustly and avoids unknown obstacles in front of vehicle.

Virtual Bronchoscopy for Diagnosis of Tracheo-Bronchial Disease (기관지질환 진단을 위한 가상내시경)

  • Kim, Do-Yeon;Park, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.509-514
    • /
    • 2003
  • The virtual bronchoscopy was implemented using chest CT images to visualize inside of tracheo-bronchial wall. The optical endoscopy procedures are invasive, uncomfortable for patients and sedation or anesthesia may be required. Also, they have serious side effects such as perforation, infection and hemorrhage. In order to determine the navigation path, we segmented the tracheo-bronchial wall from the chest CT image. We used the coordinates as a navigation path for virtual camera that were calculated from medial axis transformation. We used the perspective projection and marching cube algorithm to render the surface from volumetric CT image data. The tracheobronchial disease was classified into tracheobronchial stenosis causing from inflammation or lung cancer, bronchiectasis and bronchial cancer. The virtual bronchoscopy is highly recommended as a diagnosis tool with which the specific place of tracheobronchial disease can be identified and the degree of tracheobronchial disease can be measured qualitatively, Also, the virtual bronchoscopy can be used as an education and training tool for endoscopist and radiologist.

Combination of Brain Cancer with Hybrid K-NN Algorithm using Statistical of Cerebrospinal Fluid (CSF) Surgery

  • Saeed, Soobia;Abdullah, Afnizanfaizal;Jhanjhi, NZ
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.120-130
    • /
    • 2021
  • The spinal cord or CSF surgery is a very complex process. It requires continuous pre and post-surgery evaluation to have a better ability to diagnose the disease. To detect automatically the suspected areas of tumors and symptoms of CSF leakage during the development of the tumor inside of the brain. We propose a new method based on using computer software that generates statistical results through data gathered during surgeries and operations. We performed statistical computation and data collection through the Google Source for the UK National Cancer Database. The purpose of this study is to address the above problems related to the accuracy of missing hybrid KNN values and finding the distance of tumor in terms of brain cancer or CSF images. This research aims to create a framework that can classify the damaged area of cancer or tumors using high-dimensional image segmentation and Laplace transformation method. A high-dimensional image segmentation method is implemented by software modelling techniques with measures the width, percentage, and size of cells within the brain, as well as enhance the efficiency of the hybrid KNN algorithm and Laplace transformation make it deal the non-zero values in terms of missing values form with the using of Frobenius Matrix for deal the space into non-zero values. Our proposed algorithm takes the longest values of KNN (K = 1-100), which is successfully demonstrated in a 4-dimensional modulation method that monitors the lighting field that can be used in the field of light emission. Conclusion: This approach dramatically improves the efficiency of hybrid KNN method and the detection of tumor region using 4-D segmentation method. The simulation results verified the performance of the proposed method is improved by 92% sensitivity of 60% specificity and 70.50% accuracy respectively.