무릎 관절 연골은 두께가 얇아 대부분 무릎 질환의 원인이 되고 있다. 그러므로 무릎 자기공명영상에서 관절 연골 분할은 무릎 질환의 정확한 진단을 위한 필수조건이다. 특히 수동이 아닌 전자동 방식으로 무릎 관절 연골을 분할하여야만 효과적인 무릎 질환 진단을 할 수 있다. 본 논문에서는 뇌 자기공명영상에서 대표적으로 사용되는 레벨 셋 기반의 영상 분할 기법을 분석하여 무릎 자기공명영상에 적용 시 문제점을 파악하고 이를 해결함으로써, 무릎 자기공명영상에 레벨 셋 기반 영상분할 방식을 적용하였다. 이는 본 논문에서 제안하는 분할기법을 사용할 경우 무릎 관절 연골 분할에 대한 모든 과정이 전자동화 되어 기존 반자동화 방식보다 빠른 처리가 가능하며, 3차원 형상화를 통해 보다 정확한 진단에 도움을 줄 수 있다. 또한 우리는 제안하고 있는 분할기법이 기존 대표적인 무릎 관절 분할보다 더 높은 정확도를 갖는 것을 실험을 통해 확인할 수 있었다.
직관적 퍼지 c-평균 군집화 모델을 이용하는 자기공명 영상의 분할 방법이 본 논문에서 제안되었다. 본 논문에서 채택하는 fuzzy c-means with intuition (FCM-I)은 잡음의 영향을 줄이기 위하여 직관이라는 척도를 사용한다. 실제적 자기 공명 영상에 대해 영상 분할의 실험을 수행하고 기존의 몇몇 군집화 알고리즘과 성능을 비교하였다. 기존의 모델들과 성능을 비교한 결과, FCM-I 기반의 분할 방법은 잡음과 필요한 계수의 선택에 대해 상대적으로 강인하여, 영상 분할에 유용한 모델이 될 수 있음을 확인할 수 있었다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제4권2호
/
pp.142-148
/
2004
In this paper, we propose the color fuzzy decision algorithm to face segmentation in a color image. Our algorithm can segment without the user's interaction by fuzzy decision marking. And it removes small parts such as a noise using wavelet morphology in the image obtained by applying the fuzzy decision algorithm. Also, it merges and chooses the face region in each quantization image through rough sets. This video object division algorithm is shown to be superior to a conventional algorithm.
Ye, Chul-Soo;Kim, Kyoung-Ok;Lee, Jong-Hun;Lee, Kwae-Hi
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.59-64
/
2002
This paper presents a method for line segment extraction for 3-d building reconstruction. Building roofs are described as a set of planar polygonal patches, each of which is extracted by watershed-based image segmentation, line segment matching and coplanar grouping. Coplanar grouping and polygonal patch formation are performed per region by selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been applied to high resolution aerial images and the results show accurate 3-d building reconstruction.
본 논문은 다시점에서 물체를 촬영한 영상들의 집합, 즉, 다시점 영상 집합(multi-view image set)이 주어진 경우, 적은 사용자 입력을 통해 효율적으로 영상 집합 내 관심 물체의 영역을 추출하는 기법을 제안한다. 제안하는 기법은 사용자가 직접 입력을 통해 영역화한 하나의 영상을 바탕으로, 그 영상의 배경 및 전경과 인접 영상 간의 변형을 각각 근사하여 전경 및 배경에 대응되는 인접 영상의 영역을 파악하고, 이 영역들을 통해 인접 영상을 영역화한 후, 영역화된 영상을 바탕으로 다음 인접 영상을 영역화하는 과정을 순차적으로 반복하여 영상 집합 전체를 영역화한다. 이때 전경 및 배경의 변형은 각각 특징점 기반 레지스트레이션(registration) 기법과 선형성 거리비율 보존(affine) 변형을 가정한 대응점 기반 변형행렬(homography)을 통해 근사되며, 각 대응 영역을 기반으로 하는 화소 색 분포 및 형상 정보(shape prior)를 마르코프 랜덤 장(Markov random field)에서의 에너지 최소화에 기반을 둔 영역화 기법에 적용하여 영역화를 수행한다. 제시하는 실험 결과는 제안하는 기법이 적은 사용자 입력으로 다시점 영상 집합 전체를 효과적으로 영역화한다는 것을 뒷받침한다.
Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
Korean Journal of Radiology
/
제24권4호
/
pp.294-304
/
2023
Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.
In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step. Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance, the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.
본 논문에서는 단일 프레임 영상에 존재하는 객체를 Active Contour 기반의 영역 분할 과정을 거쳐 분할하였다. Active Contour는 영상에서 객체의 윤곽 형태를 검출해내는 것으로 다중 객체 분할을 위해 각 객체의 윤곽 형태를 검출해 낼 수 있도록 다중 탐색 시작점을 갖도록 하였다. 생성된 객체 별 윤곽 정보를 기반으로 이진화하여 초기 객체 영역을 생성하였다. 초기 객체 영역 내부의 홀 영역과 픽셀 값의 변화로 인한 내부 분할을 hole filling을 수행하여 보정함으로써 최종 객체 영역을 생성하였다. 제안한 기법은 기존 영역 기반 분할의 문제점인 잡음이나 경계선 부근에서 객체 분할이 정확히 이루어지지 않는 부분을 보완하였다. 제안 방법을 비교하기 위해 실제 영상에 기존에 제안된 객체 분할 방법과 제안한 방법을 각각 적용하여 비교하였다.
Researching in text detection and segmentation has been done for a long period in the OCR area. However, there is some other area that the text detection and segmentation from images can be very useful. In this report, we first propose the design of a mobile translator system which helps non-native speakers to understand the foreign language using ubiquitous mobile network and camera mobile phones. The main focus of the paper will be the algorithm in detecting and segmenting texts embedded in the natural scenes from taken images. The image, which is captured by a camera mobile phone, is transmitted to a translator server. It is initially passed through some preprocessing processes to smooth the image as well as suppress noises. A threshold is applied to binarize the image. Afterward, an edge detection algorithm and connected component analysis are performed on the filtered image to find edges and segment the components in the image. Finally, the pre-defined layout relation constraints are utilized in order to decide which components likely to be texts in the image. A preliminary experiment was done and the system yielded a recognition rate of 94.44% on a set of 36 various natural scene images that contain texts.
본 논문은 공간 부호화 패턴들을 이용하여 3차원 얼굴 정보를 정확하게 측정하기 위하여 초기 얼굴 패턴 영상으로부터 이미지 패턴을 검출하기 위한 새로운 알고리즘을 제안한다. 획득된 영상이 불균일하거나 패턴의 경계가 명확하지 않으면 패턴을 분할하기가 어렵다. 그리고 누적된 오류로 인하여 코드화가 되지 않는 영역이 발생한다. 본 논문에서는 이러한 요인에 강하고 코드화가 잘 될 수 있도록 FCM 클러스터링 방법을 이용하였다. 패턴 분할을 위하여 클러스터는 2개, 최대 반복횟수는 100, 임계값은 0.00001로 설정하여 실험하였다. 제안된 패턴 분할 방법은 기존 방법들(Otsu, uniform error, standard deviation, Rioter and Calvard, minimum error, Lloyd)에 비해 8-20%의 분할 효율을 향상시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.