• Title/Summary/Keyword: Image Set Segmentation

Search Result 195, Processing Time 0.023 seconds

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

Segmentation of Welding Defects using Level Set Methods

  • Mohammed, Halimi;Naim, Ramou
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.1001-1008
    • /
    • 2012
  • Non-destructive testing (NDT) is a technique used in science and industry to evaluate the properties of a material without causing damage. In this paper we propose a method for segmenting radiographic images of welding in order to extract the welding defects which may occur during the welding process. We study different methods of level set and choose the model adapted to our application. The methods presented here take the property of local segmentation geodesic active contours and have the ability to change the topology automatically. The computation time is considerably reduced after taking into account a new level set function which eliminates the re-initialization procedure. Satisfactory results are obtained after applying this algorithm both on synthetic and real images.

Implementation Mode Image Segmentation Method for Object Recognition (물체 인식을 위한 개선된 모드 영상 분할 기법)

  • Moon, Hak-Yong;Han, Wun-Dong;Cho, Heung-Gi;Han, Sung-Ryoung;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In this paper, implementation mode image segmentation method for separate image is presented. The method of segmentation image in conventional method, the error are generated by the threshold values. To improve these problem for segmentation image, the calculation of weighting factor using brightness distribution by histogram of stored images are proposed. For safe image of object and laser image, the computed weighting factor is set to the threshold value. Therefore the image erosion and spread are improved, the correct and reliable informations can be measured. In this paper, the system of 3-D extracting information using the proposed algorithm can be applied to manufactory automation, building automation, security guard system, and detecting information system for all of the industry areas.

A Hippocampus Segmentation in Brain MR Images using Level-Set Method (레벨 셋 방법을 이용한 뇌 MR 영상에서 해마영역 분할)

  • Lee, Young-Seung;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1075-1085
    • /
    • 2012
  • In clinical research using medical images, the image segmentation is one of the most important processes. Especially, the hippocampal atrophy is helpful for the clinical Alzheimer diagnosis as a specific marker of the progress of Alzheimer. In order to measure hippocampus volume exactly, segmentation of the hippocampus is essential. However, the hippocampus has some features like relatively low contrast, low signal-to-noise ratio, discreted boundary in MRI images, and these features make it difficult to segment hippocampus. To solve this problem, firstly, We selected region of interest from an experiment image, subtracted a original image from the negative image of the original image, enhanced contrast, and applied anisotropic diffusion filtering and gaussian filtering as preprocessing. Finally, We performed an image segmentation using two level set methods. Through a variety of approaches for the validation of proposed hippocampus segmentation method, We confirmed that our proposed method improved the rate and accuracy of the segmentation. Consequently, the proposed method is suitable for segmentation of the area which has similar features with the hippocampus. We believe that our method has great potential if successfully combined with other research findings.

Color Object Segmentation using Distance Regularized Level Set (거리정규화 레벨셋을 이용한 칼라객체분할)

  • Anh, Nguyen Tran Lan;Lee, Guee-Sang
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.53-62
    • /
    • 2012
  • Object segmentation is a demanding research area and not a trivial problem of image processing and computer vision. Tremendous segmentation algorithms were addressed on gray-scale (or biomedical) images that rely on numerous image features as well as their strategies. These works in practice cannot apply to natural color images because of their negative effects to color values due to the use of gray-scale gradient information. In this paper, we proposed a new approach for color object segmentation by modifying a geometric active contour model named distance regularized level set evolution (DRLSE). Its speed function will be designed to exploit as much as possible color gradient information of images. Finally, we provide experiments to show performance of our method with respect to its accuracy and time efficiency using various color images.

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

SEGMENTATION WITH SHAPE PRIOR USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • Terbish, Dultuya;Kang, Myungjoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.225-244
    • /
    • 2014
  • In this work, we discuss segmentation algorithms based on the level set method that incorporates shape prior knowledge. Fundamental segmentation models fail to segment desirable objects from a background when the objects are occluded by others or missing parts of their whole. To overcome these difficulties, we incorporate shape prior knowledge into a new segmentation energy that, uses global and local image information to construct the energy functional. This method improves upon other methods found in the literature and segments images with intensity inhomogeneity, even when images have missing or misleading information due to occlusions, noise, or low-contrast. We consider the case when the shape prior is placed exactly at the locations of the desired objects and the case when the shape prior is placed at arbitrary locations. We test our methods on various images and compare them to other existing methods. Experimental results show that our methods are not only accurate and computationally efficient, but faster than existing methods as well.

Optimization of Multi-Atlas Segmentation with Joint Label Fusion Algorithm for Automatic Segmentation in Prostate MR Imaging

  • Choi, Yoon Ho;Kim, Jae-Hun;Kim, Chan Kyo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • Purpose: Joint label fusion (JLF) is a popular multi-atlas-based segmentation algorithm, which compensates for dependent errors that may exist between atlases. However, in order to get good segmentation results, it is very important to set the several free parameters of the algorithm to optimal values. In this study, we first investigate the feasibility of a JLF algorithm for prostate segmentation in MR images, and then suggest the optimal set of parameters for the automatic prostate segmentation by validating the results of each parameter combination. Materials and Methods: We acquired T2-weighted prostate MR images from 20 normal heathy volunteers and did a series of cross validations for every set of parameters of JLF. In each case, the atlases were rigidly registered for the target image. Then, we calculated their voting weights for label fusion from each combination of JLF's parameters (rpxy, rpz, rsxy, rsz, β). We evaluated the segmentation performances by five validation metrics of the Prostate MR Image Segmentation challenge. Results: As the number of voxels participating in the voting weight calculation and the number of referenced atlases is increased, the overall segmentation performance is gradually improved. The JLF algorithm showed the best results for dice similarity coefficient, 0.8495 ± 0.0392; relative volume difference, 15.2353 ± 17.2350; absolute relative volume difference, 18.8710 ± 13.1546; 95% Hausdorff distance, 7.2366 ± 1.8502; and average boundary distance, 2.2107 ± 0.4972; in parameters of rpxy = 10, rpz = 1, rsxy = 3, rsz = 1, and β = 3. Conclusion: The evaluated results showed the feasibility of the JLF algorithm for automatic segmentation of prostate MRI. This empirical analysis of segmentation results by label fusion allows for the appropriate setting of parameters.

Proposal of Image Segmentation Technique using Persistent Homology (지속적 호몰로지를 이용한 이미지 세그멘테이션 기법 제안)

  • Hahn, Hee Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.223-229
    • /
    • 2018
  • This paper proposes a robust technique of image segmentation, which can be obtained if the topological persistence of each connected component is used as the feature vector for the graph-based image segmentation. The topological persistence of the components, which are obtained from the super-level set of the image, is computed from the morse function which is associated with the gray-level or color value of each pixel of the image. The procedure for the components to be born and be merged with the other components is presented in terms of zero-dimensional homology group. Extensive experiments are conducted with a variety of images to show the more correct image segmentation can be obtained by merging the components of small persistence into the adjacent components of large persistence.

Tongue Segmentation Using the Receptive Field Diversification of U-net

  • Li, Yu-Jie;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.37-47
    • /
    • 2021
  • In this paper, we propose a new deep learning model for tongue segmentation with improved accuracy compared to the existing model by diversifying the receptive field in the U-net. Methods such as parallel convolution, dilated convolution, and constant channel increase were used to diversify the receptive field. For the proposed deep learning model, a tongue region segmentation experiment was performed on two test datasets. The training image and the test image are similar in TestSet1 and they are not in TestSet2. Experimental results show that segmentation performance improved as the receptive field was diversified. The mIoU value of the proposed method was 98.14% for TestSet1 and 91.90% for TestSet2 which was higher than the result of existing models such as U-net, DeepTongue, and TongueNet.