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ABSTRACT. In this work, we discuss segmentation algorithms based on the level set method
that incorporates shape prior knowledge. Fundamental segmentation models fail to segment
desirable objects from a background when the objects are occluded by others or missing parts
of their whole. To overcome these difficulties, we incorporate shape prior knowledge into a new
segmentation energy that, uses global and local image information to construct the energy func-
tional. This method improves upon other methods found in the literature and segments images
with intensity inhomogeneity, even when images have missing or misleading information due to
occlusions, noise, or low-contrast. We consider the case when the shape prior is placed exactly
at the locations of the desired objects and the case when the shape prior is placed at arbitrary
locations. We test our methods on various images and compare them to other existing methods.
Experimental results show that our methods are not only accurate and computationally efficient,
but faster than existing methods as well.

1. INTRODUCTION

Image segmentation is one of the most basic concepts in image processing. Extensive re-
search on this topic has produced a numerous of segmentation methods. The goal of image
segmentation is to partition an image into regions of objects detected from background of the
image. Most segmentation approaches are based on the Mumford-Shah (MS) functional [1],
which is a region based model. Another common approach is the active contour model, which
is an edge based model. This model detects significant contours rather than partitioning an
image into homogeneous regions. Other traditional approaches are discussed in [16, 17, 18].
Even though these models are capable of detecting objects in an image, they fail to detect an
object’s interior. Furthermore, once a curve(or contour) detects an object’s boundary, segmen-
tation stops.
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To overcome the drawbacks of traditional approaches [16, 17, 18], Chan and Vese (Chan-
Vese) propose one of the well-known approach named active contours without edges [2], and
reformulate the MS functional in terms of the level set method [3]. This approach was also
extended to images with multiple-regions [4]; however, the re-initialization process of the level
set functions makes it computationally expensive. In this extension, they proposed the piece-
wise constant (PC) model, which works well on the images with intensity homogeneity and
the piecewise smooth (PS) approach, which segments images with intensity inhomogeneity.
Unfortunately, these methods are computationally expensive as well.

Inspired by the active contour model, the local binary fitting (LBF) method was proposed
to segment images with intensity inhomogeneity [11, 12]. This method imposes local intensity
information as constraints and eliminates the re-initialization process by using variational level
set formulation without re-initialization [24, 25]. The LBF method produces better segmenta-
tion results and is more computationally efficient than the PS model. The local image fitting
(LIF) energy approach was also designed of the LBF model and to regularize the level set func-
tion using Gaussian filtering for variational level set; thus, LIF eliminates the re-initialization
process.

All of these methods fail to segment images with missing or misleading information due to
occlusion, noise or low-contrast. Therefore, shape prior knowledge is incorporated to improve
the robustness of such segmentation methods. Many approaches have been developed for shape
prior segmentation. In general, the segmentation methods that incorporate shape information
can be classified into two types: based on statistical knowledge of the shape [5, 6, 7] and based
on level set knowledge of the shape [8, 9, 10, 21, 22].

We focus on the level set knowledge of the shape, which allows us to use a variational
approach. Most methods focus on segmenting only one desired object, Cremers et al.’s model,
on the other hand, can segment the desired object and others in a given image by introducing a
labeling function [9]. In this model, the size, pose and location of the shape have to be similar
to the desired one; in other words, geometric transformations of the shapes are prohibited. To
overcome this limitation, Chan and Zhu proposed an algorithm [10] in which the shape term is
independent of the image domain. An additional term enables the labeling function to be easily
controlled. Thiruvenkadam et al. [21] and J. Woo et al. [22] extended the Chan-Zhu model to
segment images with multiple-regions. These models are PC models; thus, they do not work
well for the images with intensity inhomogeneity.

Inspired by Wang et al.’s model [13], we propose a segmentation method for images with
intensity inhomogeneity by modifying the LIF model. Our model drives the motion of the
contour far away from object boundaries by utilizing the fitting term of the Chan-Vese model
as an auxiliary global intensity fitting term. Therefore, the initial level set is more flexible, and
the computation cost is less than that of the LIF model.

Fundamental methods for shape prior segmentation utilize a general energy functional that
is a linear combination of segmentation energy and shape energy. Analogous to the general
energy functional, we minimize a total energy function that, consists of our modified LIF en-
ergy and the shape energy. Our approach is able to segment the desired object, as well as other
objects, when images have independent intensity inhomogeneous and homogeneous regions.
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Moreover, our approach succeeds even when objects are occluded or missing some parts (i.e.,
the image is corrupted). We consider two cases for the location of given shape prior. First,
the shape prior is placed exactly at the locations of desired objects. Second, a given shape
prior is placed at arbitrary locations. Numerical experiments show that our approach is more
inexpensive and accurate than extensions of models proposed by Cremers et al. and Chan and
Zhu.

This paper is organized as follows: Section 2 discusses previous works. We review image
segmentation models for images with intensity homogeneity and inhomogeneity and review
the shape prior segmentation models for images with noise, occlusions or low-contrast. The
main contributions of this work are presented in Section 3. In Section 3.1, we propose a novel
method for images with intensity inhomogeneity, named the active contours driven by global
and local image fitting energy. In order to cope with the intensity inhomogeneity of the image,
we set a local image fitting term. To overcome sensitivity of initialization, a global image fitting
term is considered. In Section 3.2, we propose a shape prior segmentation, which incorporates
shape prior knowledge to improve robustness and segment the multiple objects with different
intensities using only one level set function. Numerical experiments are discussed in Section
4. Finally, we conclude our work in Section 5.

2. RELATED WORKS

First, we review a region-based segmentation method with level sets was proposed by Chan
and Vese [2, 19]. This is a variational approach for image segmentation without a terminating
edge-function, i.e., the model does not include the gradient of the image to stop the process.
Moreover, it can automatically detect the interior contours of objects using flexible initial curve.
The Chan-Vese model is a particular case of the Mumford-Shah segmentation technique [1]
when i=2. Chan and Vese proposed minimizing the following functional:

EChan−V ese(c1, c2, C) = λ1

∫
in(C)

|I0 − c1|2dx+ λ2

∫
out(C)

|I0 − c2|2dx

+ µ · Length(C) + ν · Area(inside(C))
(2.1)

where I0 is a given image on the bounded open subset Ω in R2. In most cases, ν = 0 and
λ1 = λ2 = 1. The level set formulation of EChan−V ese can be written as

EChan−V ese(c1, c2, φ) =

∫
Ω

((I0 − c1)2H(φ) + (I0 − c2)2(1−H(φ)))dx

+ µ

∫
Ω
|∇H(φ)|dx+ ν

∫
Ω
H(φ)dx.

(2.2)

Inspired by Zhao et al. [26], Vese and Chan extended their model using a multiphase level set
formulation to partition multiple regions. Piecewise constant(PC) and Piecewise smooth(PS)
models were proposed in [4]. The PC model has the advantage that it can represent triple junc-
tions and multiple regions. The works of Chan and Vese have led to numerous segmentation
methods. For example, Kim and Kang [27] proposed an efficient algorithm for multiple-region
segmentation and considered finding the number of regions in a given image automatically.



228 T. DULTUYA AND M. KANG

These methods work well for images with intensity homogeneity (or roughly constant in each
phase) but do not work for images with intensity inhomogeneity.

2.1. Segmentation models for images with intensity inhomogeneity. Intensity inhomogene-
ity often occurs as a result of technical limitations. In particular, inhomogeneities in magnetic
resonance (MR) images arise from nonuniform magnetic fields produced by ratio-frequency
coils, as well as from variations in object susceptibility. Therefore, many segmentation ap-
proaches have been developed for images with intensity inhomogeneity.

The first approach is the PS model proposed by Vese and Chan [4]. Consider the PS model
for images with intensity inhomogeneity when n = 2 (two phase case). Functions f+ and
f− are assumed to be C1 functions on φ ≥ 0 and φ ≤ 0 respectively. And the link between
unknowns f = f+H(φ)+f−(1−H(φ)) and φ can be expressed by introducing two functions
f+ and f− such that

f(x, y) =

{
f+(x, y), if φ(x, y) ≥ 0

f−(x, y), if φ(x, y) < 0.

The PS model is formulated as minimizing the following energy:

EPS2 (f+, f−,Φ) =

∫
Ω

((I0 − f+)2H(φ) + (I0 − f−)2(1−H(φ)))dxdy

+ µ

∫
Ω

(|∇f+|2H(φ) + |∇f−|2(1−H(φ)))dxdy + ν

∫
Ω
|∇H(φ)|.

This model can be extended to segment an image with intensity inhomogeneity and include two
or more phases. Even though the PS model can segment an image by reducing the influence of
intensity inhomogeneity, it is computationally expensive and inefficient in practice.

Compared to the PS model, a more inexpensive and accurate model was proposed by Li et al.
[11, 12]. This model is called local binary fitting (LBF), which applies local intensity informa-
tion as constraints. The main idea is to introduce two spatially varying fitting functions f1(x)
and f2(x) to approximate the local intensities inside and outside of the contour, respectively.
The local data fitting term is defined as follows in level set formulation:

ELBF (φ, f1, f2) = λ1

∫
[Kσ(x− y)|I0(y)− f1(x)|2H(φ(y))dy]dx

+ λ2

∫
[Kσ(x− y)|I0(y)− f2(x)|2(1−H(φ(y)))dy]dx

(2.3)

where H is the Heaviside function, Kσ is a Gaussian kernel with standard deviation σ, and λ1

and λ2 are positive constants; in most cases, λ1 = λ2 = 1.
The distance regularizing term P (φ)

P (φ) =

∫
Ω

1

2
(|∇φ| − 1)2dxdy (2.4)
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is incorporated into the LBF model to give stable evolution of the level set function φ. In
addition, it is necessary to smooth the zero level set φ by penalizing its length, given by

L(φ) =

∫
Ω
δ(φ(x))|∇φ(x)|dx. (2.5)

Thus, the efficient energy can be written as follows:

F (φ, f1, f2) = ELBF (φ, f1, f2) + µP (φ) + νL(φ) (2.6)

where µ and ν are positive constants. Incorporating the distance regularizing term into the LBF
energy functional renders, the re-initialization process unnecessary; thus, the LBF method is
computational inexpensive and efficient.

Here, f1 and f2 are defined by minimizing F (φ, f1, f2) for a fixed level set function φ.
Using calculus of variations, these functions are given by

f1(x) =
Kσ(x) ∗ [Hε(φ(x))I0(x)]

Kσ(x) ∗Hε(φ(x))
(2.7)

and

f2(x) =
Kσ(x) ∗ [(1−Hε(φ(x)))I0(x)]

Kσ(x) ∗ [1−Hε(φ(x))]
(2.8)

where Hε is the regularized version of the Heaviside function.
Note that the standard deviation σ of the kernel plays an important role. It can be viewed

as a scale parameter that controls the region-scalability from small neighborhoods to the entire
image domain [12]. The scale parameter should be properly chosen according to the contents
of a given image. In particular, when an image is too noisy or has low contrast, a large value
of σ should be chosen. Unfortunately, this may cause a high computational cost. Small values
of σ can cause undesirable result as well. Because of f1 and f2 in (2.7),(2.8), the LBF model
is able to handle images with intensity inhomogeneity. These functions can be viewed as the
weighted averages of the image intensities in a Gaussian window inside and outside the contour,
respectively.

Inspired by the LBF model [11], a more computationally efficient and accurate model was
proposed by Zhang et al. [14]. They defined the local fitted image as

ILFI = m1H(φ) +m2(1−H(φ)) (2.9)

where {
m1 = mean(I0 ∈ ({x ∈ Ω|φ(x) < 0} ∩Wk(x)))

m2 = mean(I0 ∈ ({x ∈ Ω|φ(x) > 0} ∩Wk(x))).
(2.10)

The rectangular window function is denoted byWk(x). A Gaussian kernel is used to regularize
the level set function instead of the traditional regularizing term div(∇φ/|∇φ|)δ(φ).

Then proposed local intensity fitting (LIF) energy formulation is given by

ELIF =
1

2

∫
Ω
|I0(x)− ILFI(x)|2dx , x ∈ Ω (2.11)

where, ILFI is a local fitted image, which defined in (2.9).
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In this model, a Gaussian filtering is applied to regularize the level set function, i.e., φ =
Gγ ∗ φ , where γ is the standard deviation. This method can segment an images with intensity
inhomogeneity or multiple objects with different intensities.

The local and global intensity fitting (LGIF) method [13] takes advantage of the Chan-
Vese and LBF models by combining local and global intensity information to handle intensity
inhomogeneity. The local intensity fitting energy ELIF is equal to the LBF model, and the
global intensity fitting (GIF) energy EGIF is the fitting term of the Chan-Vese model:

EGIF (φ, c1, c2) =

∫
|I0(x)− c1|2H(φ(x))dx+

∫
|I0(x)− c2|2(1−H(φ(x)))dx.

The LGIF method defined the energy functional as follows:

ELGIF (φ, c1, c2, f1, f2) = (1− ω)ELIF (φ, f1, f2) + ωEGIF (φ, c1, c2)

+ νL(φ) + µP (φ)
(2.12)

where f1 and f2 are the optimal fitting functions given by (2.7) and (2.8), L(φ) is length of
the zero level set for smoothing given by (2.5), P (φ) is the deviation of the level set function
from the signed distance function in (2.4) to eliminate re-initialization process, and ω is a
positive constant such that (0 ≤ ω ≤ 1). The value of ω should be small when the intensity
inhomogeneity in an image is severe.

2.2. Shape prior segmentation models. The previous methods fail to segment images with
missing or misleading information due to noise, occlusion, or low-contrast. Therefore, shape
prior knowledge is incorporated to improve the robustness of these segmentation methods.
Method based on shape’s level set knowledge were first introduced by Chen et al. [20]. They
modified the Geodesic Active Contour model by adding a shape term. Their model is able to
find boundaries that are similar to the shape prior, even when the boundary has gaps in the
image.

Level set representation of the shape prior was introduced in [23]. Let φ : Ω → R2 be
a Lipchitz function that refers to the level set representation of a given shape S. This shape
defines a region R in the image domain Ω. The shape representation is defined by

φS(x, y) =


0 if (x, y) ∈ S
+D((x, y), S) > 0, if (x, y) ∈ RS
−D((x, y), S) < 0, if (x, y) ∈ Ω \RS

(2.13)

where D((x, y), S) is the minimum Euclidean distance between the grid location (x, y) and
shape S. Level set knowledge-based models represent a shape according to (2.13).

Many models focus only on segmenting the desired objects. Cremers et al.’s model, however,
can also segment other objects by introducing a labeling function [9]. This model is given by

ECremers(c1, c2, φ, L) = EChan−V ese(c1, c2, φ) + Eshape(φ,L). (2.14)
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The shape term Eshape(φ,L) has three options: Eglobalshape ,Estaticshape, and Edynamicshape . The global
shape prior is formulated as

Eglobalshape (φ) = α

∫
Ω

(φ(x)− φ0(x))2dx (2.15)

where φ0 is the level set function embedding a given shape prior, and α controls the weight of
the prior shape. The global shape term of Cremers et al.’s has the ability to ignore objects that
do not require segmentation. Static energy segments all objects in an image. The static shape
term is given by

Estaticshape(φ,L) = α

∫
Ω

(φ(x)− φ0(x))2(L+ 1)2dx (2.16)

where L is a static labeling function used to indicate the region where the shape prior should
be active. Labeling function L is either +1 and −1 depending on whether the prior should be
enforced or not. Note that, the labeling function must be specified beforehand.

By minimizing the total energy with dynamic shape term with respect to L and φ, prior
knowledge of the labeling function can be avioded. The dynamic shape term is given by

Edynamicshape (φ,L) = α

∫
Ω

(φ(x)− φ0(x))2(L+ 1)2dx

+

∫
Ω
λ2(L− 1)2dx+ γ

∫
Ω
|∇H(L)|dx.

(2.17)

Compared to the static labeling function, this labeling function is dynamic, i.e., it does not need
to be specified beforehand. It can control the region where the shape prior is enforced and the
smoothness of the boundary separating the regions.

Cremers et al.’s model can be extended to multiple-region images as well [28]:

ECremersextension =

∫
Ω

((I0 − c11)2H(φ1)H(φ2) + (I0 − c10)2H(φ1)(1−H(φ2)))dx

+

∫
Ω

((I0 − c01)2(1−H(φ1))H(φ2) + (I0 − c00)2(1−H(φ1))(1−H(φ2)))dx

+ ν1

∫
Ω
|∇H(φ1)|dx+ ν2

∫
Ω
|∇H(φ2)|dx

+ α1

∫
Ω

(φ1(x)− φshape1(x))2(L1 + 1)2dx

+ α2

∫
Ω

(φ2(x)− φshape2(x))2(L2 + 1)2dx

where c11, c01, c10 and c00 are the mean intensities in each region given by
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c11 = mean(I) in{x : φ1 > 0, φ2 > 0}
c01 = mean(I) in{x : φ1 > 0, φ2 < 0}
c10 = mean(I) in{x : φ1 < 0, φ2 > 0}
c00 = mean(I) in{x : φ1 < 0, φ2 < 0}.

No transformation is allowed for the prior shape in Cremers et al.’s model, whereas the prior
shape is geometrically transformed in the Chan-Zhu model [9]. The concepts of invariance to
translation, rotation and scaling are defined for a set of objects.

In other words, their signed distance functions are related. Let ψ and ψ0 be the signed
distance functions of two objects S1 and S2, of the same shape. Then, there exists a four-tuple
(a, b, r, θ) such that:

ψ(x, y) = rψ0(x∗, y∗) (2.18)
where {

x∗ = (x−a) cos(θ)+(y−b) sin(θ)
r

y∗ = −(x−a) sin(θ)+(y−b) cos(θ)
r

and (a, b), r and θ represent the translation, scaling and rotation parameters, respectively. The
proposed simple shape energy is given by

Esimpleshape (φ, ψ) =

∫
Ω

(H(φ)−H(ψ))2dx (2.19)

where φ is a level set function for segmentation, ψ0 is the signed distance function of a given
prior shape, and ψ is the fixed signed distance function in (2.18) of the shape. Therefore, the
total energy of the Chan-Zhu model is

EChan−Zhu(φ, ψ, c1, c2) = EChan−V ese(φ, c1, c2) + λEsimpleshape (φ, ψ). (2.20)

More explicitly,

E(c1, c2, φ, ψ) =

∫
Ω

((I0 − c1)2H(φ) + (I0 − c2)2(1−H(φ)))dx

+ µ

∫
Ω
|∇H(φ)|+ λ

∫
Ω

(H(φ)−H(ψ))2dx.

(2.21)

Chan and Zhu extended their model by introducing labeling function L. In general case, the
shape term is

Egeneralshape (φ, ψ, L) =

∫
Ω

(H(φ)H(L)−H(ψ))2dx

+ µ1

∫
Ω

(1−H(L))dx+ µ2

∫
Ω
|∇H(L)|dx

(2.22)

where H(φ)H(L) characterizes the intersection of φ > 0 and L > 0. The second term in
(2.22) encourages the area in region {(x, y) ∈ Ω : L(x, y) > 0}, and the last term smooths the
boundary separated by L in domain Ω.
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Alternatives to the generalized Chan-Zhu model are developed in [21, 22]. Thiruvenkadam
et al. considered selective shape priors to segment multiple occluded objects. Their proposed
energy can be written as

E(Φ, C, T ) =

4∑
i=1

∫
Ω

(I0 − cimi)
2dx+ λ(

∫
Ω
|∇H(φ1)|+

∫
Ω
|∇H(φ2)|)

+

∫
Ω
{β + β1H(φ2)(c3 − c2)2}(H(φ1)− S ◦ T1)2dx

+

∫
Ω
{β + β1H(φ1)(c3 − c1)2}(H(φ2)− S ◦ T2)2dx

(2.23)

where m1 = H(φ1), m2 = H(φ2), m3 = H(φ1)H(φ2), and m4 = (1−H(φ1))(1−H(φ2)).
Two level set functions φ1 and φ2 are used to define the following four regions: {φ1 > 0},
{φ2 > 0}, {φ1 > 0, φ2 > 0} and {φ1 < 0, φ2 < 0}, and, where c1, c2, c3 and c4 are
mean intensities in each region, respectively. Function S embeds one shape prior, and Tk =
[µk, θk, tk] are rigid transformations with scale factor µk, rotation factor θk and translation
factor tk for k = 1, 2.

3. PROPOSED MODELS

3.1. Global and local image fitting energy. Inspired by Wang et al.’s model, we take advan-
tages of the LIF model and the Chan-Vese model, to reduce the computational complexity and
cost, and to improve the convergence speed by eliminating the segmentation process’ sensitiv-
ity to initialization. The fitting term of the Chan-Vese model, excluding regularization terms,
is given by:

EGIF =

∫
Ω

(|I0 − c1|2H(φ) + |I0 − c2|2(1−H(φ)))dx. (3.1)

We call this term by global image fitting (GIF) term.
The proposed energy functional consists of a local image fitting term and global image fitting

term. Specifically,
EM.LIF = ELIF + αEGIF (3.2)

where α is a positive constant such that (0 ≤ α ≤ 1). The value of α should be small for
images with severe intensity inhomogeneity.

The local image fitting term includes a local force to attract the contours and stop it at object
boundaries. This enables the model to cope with intensity inhomogeneity. The global image
fitting term includes a global force to drive the motion of the contour far away from object
boundaries. This allows flexible initialization of the contours. The modified LIF energy can be
written as

EM.LIF (φ, c1, c2) =
1

2

∫
Ω
|I0(x)−m1H(φ)−m2(1−H(φ))|2dx

+ α

∫
Ω

(|I0 − c1|2H(φ) + |I0 − c2|2(1−H(φ)))dx.

(3.3)
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Expressing m1 and m2 using the level set function φ yeilds{
m1 = Kσ∗(H(φ)I0(x))

Kσ∗(H(φ))

m2 = Kσ∗((1−H(φ))I0(x)))
Kσ∗(1−H(φ)) .

The influence of the local and global forces on the curve evolution is complementary. The local
force is dominant near the object boundaries, while the global force is dominant at locations
far away from object boundaries.

The standard deviation σ of the kernel and regularizing parameter γ play an important role.
Standard deviation σ is a scale parameter that controls the region-scalability from small neigh-
borhoods to the entire image domain. The scale parameter should be properly chosen depend-
ing on the contents of an image. In particular, when image is noisy or has low contrast, σ
should be large. Unfortunately, this results in a high computational cost. In the same way,
values of σ that are too small produce undesirable side effects as well. In general, γ should be
chosen between 0.5 and 1.

We now discuss the numerical approximation for minimizing the EM.LIF functional. Con-
stants c1 and c2 that minimize the energy in (3.3) are given by

c1 =

∫
I0(x)H(φ(x))dx∫
H(φ(x))dx

, c2 =

∫
I0(x)(1−H(φ(x)))dx∫

(1−H(φ(x)))dx
. (3.4)

Theory of calculus of variations allows us to add variation ζ to the level set function φ such that
φ̄ = φ+ εζ. For fixed c1 and c2, differentiating with respect to φ, and letting ε→ 0 produces

δEM.LIF

δφ
= lim

ε→0

d

dε
(
1

2

∫
Ω
|I0(x)−m1Hε(φ̄)−m2(1−Hε(φ̄))|2dx

+ α

∫
Ω

(|I0 − c1|2Hε(φ̄) + |I0 − c2|2(1−Hε(φ̄)))dx)

= lim
ε→0

(−
∫

Ω
δε(φ̄){I0 −m1Hε(φ̄)−m2(1−Hε(φ̄))}(m1 −m2)ζdx

+ α

∫
Ω
δε(φ̄)(−(I0 − c1)2 + (I0 − c2)2)ζdx)

= −(

∫
Ω
δε(φ){I0 −m1Hε(φ)−m2(1−Hε(φ))}(m1 −m2)ζdx

+ α

∫
Ω
δε(φ)(−(I0 − c1)2 + (I0 − c2)2)ζdx).

Therefore we obtain the Euler-Lagrange equation

δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)} = 0

where ILFI = m1Hε(φ) + m2(1 −Hε(φ)). Using the steepest gradient descent method, we
obtain the following gradient descent flow

∂φ

∂t
= δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)}. (3.5)



SHAPE PRIOR SEGMENTATION USING GLIF ENERGY 235

The algorithm for solving EM.LIF is as follows:

Step 1: Initialize the level set function φ.
Step 2: Compute c1 and c2 according to (3.4).
Step 3: Evolve the level set function φ according to (3.5).
Step 4: Regularize the level set function φ using a Gaussian kernel, i.e., φ =
Gγ ∗ φ , where γ is the standard deviation.
Step 5: Check whether the evolution is stationary. If not, return to step 3.

Using gradient descent flow (3.5) and the above algorithm, segmentation results are pro-
duced faster and require fewer iteration than the LBF, LGIF and LIF models. Experimental
results are illustrated in Fig.1. Our algorithm works well on images with intensity inhomo-
geneity and segmenting multiple objects with different intensities (Figs.1(c),(h) and (m)). The
scale parameter σ is equal to 3 for these images and the regularizing parameter γ is properly
chosen between 0.65 and 0.85. These results are similar to the results of the LIF, LBF, and
LGIF models.

The proposed model allows flexible initialization of contours as shown in Fig.1. We tested
our method using other initial contours (see Figs.1(b),(g) and (l)) and the same parameters as in
Fig.1(a), (f) and (k). As seen Figs.1(d),(i) and (n), the LIF model does not work well for these
initial conditions. We also tested the LGIF method using different initial contours as shown
in Figs.1(e),(j) and (o). Notice that same results are produced by our method. Computational
times are relatively high using the LGIF method, however. In Table1, we compare the number
of iterations and computational times for the LBF, LGIF, LIF models to our proposed method.

TABLE 1. Computation time results.

Methods Vessel(a) Vessel (c) Synthetic one (e)
Iterations(time(s)) Iterations(time(s)) Iterations(time(s))

LBF 300 (2.41) 280 (2.03) 900 (9.82)
LGIF 220 (2.05) 150 (1.29) 800 (8.47)
LIF 200 (1.16) 200 (0.94) 600 (4.43)

M.LIF 120 (0.49) 100 (0.41) 400 (1.97)

3.2. Global and local image fitting energy with shape prior. Simpler active contour meth-
ods fail to segment images with missing or misleading information due to noise, occlusion, or
low-contrast. Therefore, shape prior knowledge is incorporated to improve the robustness of
such segmentation methods. Fundamental methods for shape prior segmentation have a general
energy functional that is a linear combination of segmentation energy and shape energy. Anal-
ogous to the general energy functional, we propose a method that can be viewed as minimizing
the total energy of our modified LIF energy and the shape energy.
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Our method consider two cases. In the first case, the prior shapes are located exactly at the
placement of the desired objects and have the same scales and pose as the desired objects; thus,
no transformations is required. Let ψ0 be the signed distance function of the prior shape and L
be a static labeling function. The labeling function takes on the values +1 and −1 depending
on whether the prior shape is enforced or not.

The formulation of our energy is as follows:

E(φ, ψ0) = EM.LIF + β

∫
Ω

(H(φ)−H(ψ0))2(L+ 1)2dx (3.6)

where H(·) is the Heaviside function and EM.LIF is our modified LIF model described in
Section 3.1. More explicitly,

E(φ, ψ0, c1, c2) =
1

2

∫
Ω
|I0(x)−m1H(φ)−m2(1−H(φ))|2dx

+ α

∫
Ω

(|I0 − c1|2H(φ) + |I0 − c2|2(1−H(φ)))dx

+ β

∫
Ω

(H(φ)−H(ψ0))2(L+ 1)2dx.

(3.7)

Numerical approximations of this model are discussed in previous sections. Therefore, using
the steepest descent method, the gradient descent flow of energy (3.7) is given by:

∂φ

∂t
= δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)}

− 2βδε(φ)(Hε(φ)−Hε(ψ0))(L+ 1)2.
(3.8)

If we minimize the above energy with respect to c1 and c2 for fixed φ, the optimal values of
c1 and c2 are obtained using (3.4). The regularized versions of the Heaviside and Dirac delta
functions are

Hε(φ) =
1

2
(1 +

2

π
arctan(

φ

ε
))

δε(φ) =
1

π
· ε

ε2 + φ2
.

(3.9)

For the second case of our model, the prior shape ψ0 is placed at arbitrary locations. The
prior shape is transformed to the location, pose, and size according to{

x∗ =
(x−a−acx) cos(θ)+(y−b−bcy) sin(θ)

r + acx

y∗ =
−(x−a−acx) sin(θ)+(y−b−bcy) cos(θ)

r + bcy.
(3.10)

The new signed distance function ψ is defined as ψ(x, y) = rψ0(x∗, y∗). Then proposed
energy is written as

E(φ, ψ) = EM.LIF + β

∫
Ω

(H(φ)−H(ψ))2(L+ 1)2dx. (3.11)
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Numerical approximations of minimizing the functionalE(φ, ψ) are performed using the same
computation as other proposed models. Minimizing energy (3.11) with respect to φ for fixed
c1 and c2, results in the following gradient descent flow:

∂φ

∂t
= δε(φ){(I0 − ILFI)(m1 −m2) + α(−(I0 − c1)2 + (I0 − c2)2)}

− 2βδε(φ)(Hε(φ)−Hε(ψ))(L+ 1)2.
(3.12)

For ψ, note that
S(φ, ψ) = (Hε(φ)−Hε(ψ))(L+ 1)2.

Thus, the optimal pose parameters are updated according to
∂a

∂t
=

∫
Ω
S(φ, ψ){ψ0x(x∗, y∗) cos(θ)− ψ0y(x

∗, y∗) sin(θ)}δε(ψ)dxdy

∂b

∂t
=

∫
Ω
S(φ, ψ){ψ0x(x∗, y∗) sin(θ) + ψ0y(x

∗, y∗) cos(θ)}δε(ψ)dxdy

∂r

∂t
=

∫
Ω
S(φ, ψ){−ψ0(x∗, y∗) + ψ0x(x∗, y∗)x∗ + ψ0y(x

∗, y∗)y∗}δε(ψ)dxdy

∂θ

∂t
=

∫
Ω
S(φ, ψ){−rψ0x(x∗, y∗)y∗ + rψ0y(x

∗, y∗)x∗}δε(ψ)dxdy

(3.13)

where

ψ0x =
∂ψ0

∂x
, ψ0y =

∂ψ0

∂y

and (x∗, y∗) is defined according to (3.10).
Gaussian filtering is applied to regularize functions φ and ψ at each iteration to achieve a

smooth level set function and shape. The algorithm for solving E(φ, ψ) is given as follows:

Step 1: Initialize the level set function φ.
Step 2: Compute c1 and c2 according to (3.4).
Step 3: Evolve the level set function φ according to (3.12).
Step 4: At each iteration, update ψ function using (3.13).
Step 5: Evolve the level set function φ according to (3.12).
Step 6: Regularize the level set function φ and ψ using the Gaussian kernel, i.e.,
φ = Gγ ∗ φ ,ψ = Gγ ∗ ψ , where γ is the standard deviation.
Step 7: Check whether the evolution is stationary. If not, return to step 3.

4. EXPERIMENTAL RESULTS

In this section, we illustrate the experimental results of our proposed method. We tested
our model on noisy, occluded, and low-contrast images, with varying parameters. The scale
parameter σ defines the size of the kernel Kσ; its value depends on the image content. If σ is
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIGURE 1. Segmentation results of the modified LIF method: (a), (f) and (k)
are the given images with the initial level set; (b), (g) and (l) are the given
images with different initial level set; (c), (h) and (m) are the results of the
modified LIF model; (d), (i) and (n) are the results of the LIF model; (e), (j)
and (o) are the results of the LGIF model.

too small, we cannot segment the desirable objects. In contrast, if σ is too large, it may result
in high computational costs. For the Gaussian filtering Gγ , γ is chosen between 0.5 and 1, and
the kernel size is 5× 5.

Figures 2, 3 and 4 show the result of the first case of the proposed model, i.e., the prior
shape is placed exactly at the locations of desired objects. Figures 5, 6 and 7 show the results
of the second case, i.e., the prior shape is placed at arbitrary locations. In Fig.2, we utilize our
algorithm for a synthetic image in the cases of no prior shape, including the prior shape, and
with noise. Our segmentation model works well for each of these cases when some parts are
missing as shown in the Figs2(c) and (d). For the synthetic image, we set σ = 3, γ = 0.65 to
regularize the level set, the time step ∆t = 0.005, and α = 0.0005 for the global image fitting
term.
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(a) (b) (c) (d)

FIGURE 2. Segmentation results of the proposed model:(a) given image with
initial level set, (b) result without shape prior, (c) result with shape prior, (d)
result in the presence of noisy.

We also tested our algorithm on real images with shape information as shown in Fig.3. As
demonstrated in Fig.3(a), if no shape prior is given, the algorithm cannot extract the object.
However, when shape prior information is used, the model segments the desired objects, even
when image is occluded as shown in Figs.3(b),(c), and (d). Figure 3(c) illustrates the result
when the labeling function L is not incorporated in the model.

(a) (b) (c)

(d) (e)

FIGURE 3. Segmentation results of the proposed model: (a) given shape, (b)
result without shape prior, (c) result with shape prior, (d) result without label-
ing function L, and (e) result with labeling (σ = 6, γ = 0.5).
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The comparison of the first case of our model to the extension of Cremers et al.’s model
is shown in Fig.4. Figures 4(b) and (c) show the extension of Cremers et al.’s model using
two level set functions and two labeling function to segment occluded and corrupted objects.
Our proposed model can segment these objects using only one level set function as shown in
Fig.4(d).

In Fig.5, the intensity of the object in the given image is similar to the background intensities.
As seen in Fig.5(b), the modified LIF and Chan-Vese algorithms are unable to segment the hand
in the given image. By utilizing shape information and the second case of our model, the results
in Figs.5(c) and (d) are obtained. Although, the object is successfully extracted, the value of σ
is large, which may cause high computational costs. Computational time and costs are shown
in Table 2. If the Chan-Zhu model is used to extract the hand in the image using the same
shape prior(see Fig.5(e)) as in Fig.5(a), the hand cannot be extracted either (Fig.5(f)). In other
words, the Chan-Zhu model works well when the prior shape is placed near the object. This is
illustrated by the next example as well.

Finally, we applied the proposed model to a brain image to extract the corpus callosum.
We compared our model with the extensions of Cremers et al.’s model and Chan-Zhu’s model.
The shape of the corpus callosum is placed arbitrary locations. As shown in Figs.6(b) and
6(d), the proposed model successfully extracts the corpus callosum in brain image. Our model
permits the shape prior to be placed far from the desired objects whereas Chan and Zhu’s model
requires the initial prior shape to be close to the desired object. In other words, the Chan-Zhu
model is not as accurate as our proposed model. These results are shown in Figs.7(c) and 7(d).
Table 2 shows the comparison of computation time of our model to other models.

(a) (b) (c) (d)

FIGURE 4. Segmentation results of the proposed model: (a) original synthetic
image, (b) initial φ1 (blue) and φ2 (red) and labeling functions L1-sky blue,
L2-green, (c) result of the four phase Cremers et al.’s model, and (d) result of
the proposed model.
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(a) (b) (c)

(d) (e) (f)

FIGURE 5. Segmentation results of the proposed model: (a) initial φ and
shapeψ, (b) result without shape prior, (c) result with shape prior (σ = 60, γ =
0.5), (d) result in presence of Gaussian noise (σ = 60, γ = 0.9), (e) initial level
set of the Chan-Zhu model, and (f) result of the Chan-Zhu model.

TABLE 2. Computation time results.

Methods Bird Hand Corpus callosum
Iter(Time(s)) Iter(Time(s)) Iter(Time(s))

4 phase Cremers 50(25.51) - 300(49.81)
Chan-Zhu model - 50(94.63) 90(158.72)
Proposed method 200(2.79) 60(23.24) 200(2.46)

5. CONCLUSION

We proposed the global and local image fitting energy method for images with intensity
inhomogeneity. In order to cope with the intensity inhomogeneity of the image, we set a
local image fitting term. To overcome initialization sensitivity, a global image fitting term was
considered. Our segmentation results were obtained faster, requiring fewer iterations than the
LBF, LGIF and LIF models. Moreover, our method worked well for multiple objects with
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(a) (b) (c) (d)

FIGURE 6. Segmentation results of the brain:(a) without shape prior, i.e., re-
sult of the modified LIF model, (b) result of the proposed model with labeling
function (σ = 3, γ = 0.5), (c) initial φ and shape ψ for the proposed model,
and (d) result of the proposed model without labeling.

(a) (b) (c) (d)

FIGURE 7. Segmentation results of the brain: (a) initials φ1(red) and φ2(blue)
for the four-phase Cremers et al.’s model, (b) result of the four-phase Cremers
et al’s model, (c) initial φ and shape ψ for the Chan-Zhu model, (d) result of
ψ for the Chan-Zhu model.

varying intensities and allowed flexible initialization of the contours. We also proposed a new
method for shape prior segmentation, called the global and local image fitting energy with
shape prior. For the shape prior segmentation method, we considered two cases: when prior
shapes were placed exactly at the locations of the desired objects and when they were placed
at arbitrary locations.

Our model has many advantages over Cremers at el.’s model. First, our model can segment
objects using only one level set function, while two level set functions are required by the four
phase case of Cremers et al.’s model. In particular, our model can segment multiple objects with
different intensities using only one level set function, even when a given image is corrupted.
Second, our method is simple, cheaper and faster. Computationally speaking, our method is
easier to numerically compute and takes less time to implement. Third, the transformation of
prior shape is not dependent on the locations of the shape and its size.
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There are a few disadvantages of our model, however. In our model, it is possible for prior
shape to be selected by a similar object rather than the training shape. In particular applications,
the prior shape ψ0 has to be embedded as the mean shape of a set of training shape; for the
corpus callosum case, the training shape of their shapes must be used. Furthermore, our method
cannot represent triple junctions because it only uses one level set function. In the future, we
will work to overcome these drawbacks and also plan to extend our method to multi-phase level
set formulation.
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