• 제목/요약/키워드: Image Segmentation and Recognition

검색결과 324건 처리시간 0.031초

AWGN 제거를 위한 합성 필터에 관한 연구 (A Study on Composite Filter for AWGN Removal)

  • 권세익;황용연;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.684-686
    • /
    • 2017
  • 현재, 영상처리는 군사, 의료, 산업 등의 넓고 다양한 분야에서 활용되고 있으며, 영상에 첨가된 잡음은 영상의 질을 저하시키다. 따라서, 잡음 제거는 영상 인식, 에지 검출, 영상 분할 등의 영상 처리를 수행하기 전에 필수적인 과정이다. 이러한 영상에 첨가된 잡음을 제거하기 위한 연구가 활발히 진행되고 있으며, 영상에 첨가되는 잡음에는 AWGN(additive white Gaussian noise)이 대표적이다. 본 논문에서는 영상에 첨가된 AWGN을 완화하기 위해, 에지 검출 및 표준편차를 이용한 필터를 합성하여 처리하는 알고리즘을 제안하였다.

  • PDF

컬러이미지에서의 얼굴검출 (Face Detection in Color images)

  • 박동희;박호식;남기환;한준희;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.236-238
    • /
    • 2003
  • 인간의 얼굴 검출은 비디오 감시, 휴먼 컴퓨터 인터페이스, 얼굴 인식, 그리고 얼굴 이미지 데이터 베이스 관리와 같은 분야에 중요한 역할을 한다. 본 논문에서는 복잡한 배경뿐만 아니라 다양한 조명 조건에서 색 이미지 변화들의 폭넓은 변화를 처리할 수 있도록 새로운 조명 보정 기술과 이웃 화소들을 조합한 간단하고 빠른 얼굴 검출 방법을 제안한다. 색상 유사도를 기반으로 각 그룹을 추출하여 후보 얼굴 영역을 생성한다. 각각의 얼굴 후보 영역을 증명하기 위하여 눈, 입의 경계맵을 구성한다. 본 논문에서 제안한 방법이 단순하고 매우 빠른 수행능력을 보여주었으며, 89%의 얼굴 검출 수행능력을 나타내었다.

  • PDF

One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images

  • Li, Zhihang;Huang, Mengqi;Ji, Pengxuan;Zhu, Huamei;Zhang, Qianbing
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.153-166
    • /
    • 2022
  • Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.

문서 영상의 기울기 검출을 위한 기준선 탐색 기법 (Baseline Searching Method for Document Skew Detection)

  • 신명진;김도연;차의영
    • 한국멀티미디어학회논문지
    • /
    • 제10권2호
    • /
    • pp.218-225
    • /
    • 2007
  • 본 논문은 문자 인식 등을 통한 문서 자동 처리 시스템을 위해서 스캔 과정에서 발생할 수 있는 문서의 기울기를 정확하게 검출하는 기법을 제안한다. 제안한 알고리즘은 처리 속도 향상을 위해 영상을 축소한 다음 형태학적 연산과 연결 성분 분석 방법으로 기울기 검출 대상 영역(ROI)을 먼저 설정한 후 설정된 영역 내에서 문서의 기울기 정보를 가지고 있는 기준선을 탐색하는 방법으로 정확하게 기울어진 각도를 검출할 수 있게 하였다. 기존의 형태학적 연산을 기반으로 한 기울기 검출 기법과 비교하고 다양한 종류의 대용량 문서 영상을 대상으로 한 실험 및 분석을 통해 제안한 기울기 검출 방법의 정확도 및 효율성을 증명하였다.

  • PDF

건설현장에서 발생하는 폐기물 인식 모델 개발 (Development of a waste recognition model at construction sites)

  • 나승욱;허석재
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.219-220
    • /
    • 2021
  • It is considered that the construction industry is one of the pivotal players in the national economy in terms of Gross Domestic Production (GDP) and employment. Behind the positive role of this industrial sector to the national economy, the construction industry generates approximately 50 % of the total waste generation from all the industrial sectors. There are several measures to mitigate the adverse impacts of the construction waste such as reduce, reuse and recycle. Recycling would be one of the effective strategies for waste minimisation, which would be able to reduce the demand upon new resources as well as enhance reusing the construction materials on sites. The automated construction waste classification system would make it possible not only to reduce the amount of labour input but also mitigate the possibility of errors during the manual classification process. In this study, we proposed an automated waste segmentation and classification system for recycling the construction and demolition waste in the real construction site context. Since the practical application to the real-world construction sites was one of the significant factors to develop the system, a YOLACT (You Only Look At CoefficienTs) algorithm was chosen to conduct the study. In this study, it is expected that the proposed system would make it possible to enhance the productivity as well as the cost efficiency by reducing the manpower for the construction and demolition waste management at the construction site.

  • PDF

인공지능 개발방식에 따른 건설 분야 인공지능 개발사례 (Cases of Artificial Intelligence Development in the Construction field According to the Artificial Intelligence Development Method)

  • 허석재;정란
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.217-218
    • /
    • 2021
  • The development of artificial intelligence in the field of construction and construction is revitalizing. The performance and development techniques of artificial intelligence are changing rapidly, but if you look at the cases of domestic construction sites, they are using technologies from 5 to 7 years ago. It is right to follow a stable method in consideration of commercialization, but the previous AI development method requires more manpower and time to develop than the current technology. In addition, in order to actively utilize artificial intelligence technology, customized artificial intelligence is required to be applied to ever-changing changes in construction sites. it is the reality As a result, even if good AI technology is secured at the construction site, it is reluctant to introduce it because there is no advantage in terms of time and cost compared to the existing method to apply it only to some processes. Currently, an AI technique with a faster development process and accurate recognition has been developed to cope with a fluid situation, so it will be important to understand and introduce the rapidly changing AI development method.

  • PDF

얼굴 표정 인식을 위한 유전자 알고리즘 기반 심층학습 모델 최적화 (Optimization of Deep Learning Model Based on Genetic Algorithm for Facial Expression Recognition)

  • 박장식
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.85-92
    • /
    • 2020
  • 심층학습은 많은 양의 데이터셋을 학습에 활용하여 객체 분류, 검출, 분할 등의 영상 분석에 탁월한 성능을 나타내고 있다. 본 논문에서는 데이터셋의 종류가 다양한 얼굴 표정인식 데이터셋들을 활용하여 학습 데이터셋의 특성이 심층학습 성능에 영향을 줄 수 있음을 확인하고, 각 학습 데이터셋에 적합한 심층학습 모델의 구성 요소를 설정하는 방법을 제안한다. 제안하는 방법은 심층학습 모델의 성능에 영향을 주는 구성 요소인 활성함수, 그리고 최적화 알고리즘을 유전 알고리즘을 이용하여 선정한다. CK+, MMI, KDEF 데이터셋에 대해서 널리 활용되고 있는 심층학습 모델의 각 구성 요소별 다양한 알고리즘을 적용하여 성능을 비교 분석하고, 유전 알고리즘을 적용하여 최적의 구성 요소를 선정할 수 있음을 시뮬레이션을 통하여 확인한다.

건표고의 외관특징 인식 및 추출 알고리즘 개발 (Development of Robust Feature Recognition and Extraction Algorithm for Dried Oak Mushrooms)

  • 이충호;황헌
    • Journal of Biosystems Engineering
    • /
    • 제21권3호
    • /
    • pp.325-335
    • /
    • 1996
  • 표고의 외관 특징들은 표고의 재배 시 생육상태의 정량적 측정을 위해서, 표고의 건조 시 건조 성능을 나타내는 정량적 지표로서, 그리고 건표고의 품질을 판정하는 요인으로서 중요한 역할을 한다. 본 논문에서는 컴퓨터 시각시스템 및 신경회로망 기술을 적용하여 표고의 갓 및 내피에 고루 분포되어 있는 외관특징을 정량적으로 추출하는 알고리즘을 개발하였다. 기존의 영상 처리 과정에서 유도되는 경험적 판정규칙 또는 명확한 수치적 판정조건에 의한 등급판정은 입력데이타의 결핍 또는 애매모호성에 따른 오차가 발생하기 쉽다. 신경회로망을 이용한 영상인식 기능을 도입함으로써 다양하고 애매모호한 표고의 외관 영상특징들을 효율적으로 처리하여 기존 영상처리 알고리즘에서 발생하는 오차를 개선하였다. 본 논문에서 제안하는 알고리즘은 표고의 갓과 내피면의 인식 및 특징 분할, 꼭지부의 검출, 제거 및 재생 등을 포함한다. 제안한 알고리즘에 의거하여 건표고의 등급판정에 주요한 품질인자들을 추출하고 정량화 하였다. 그리고 알고리즘의 개발은 흑백의 다치입력영상을 이용하여 수행하였다.

  • PDF

히스토그램 분석을 이용한 눈썹 검출 알고리즘 (Eyebrow Detection Algorithm Using the Histogram Analysis)

  • 이강호
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.46-51
    • /
    • 2002
  • 본 논문은 얼굴 요소 중 눈썹을 검출하기 위한 기법으로, 눈썹은 얼굴 인식이나 표정 인식, 얼굴 애니메이션에 중요한 역할을 하는 요소이다. 색상 영역 분할을 통해 얼굴 영역을 검출한 다음, 형판 정합(template matching)을 통해 눈을 검출한다. 눈썹은 눈 바로 위에 위치하므로 검출된 눈의 위치 값을 이용하여 눈썹 후보 영역을 설정한다. 이렇게 설정된 눈썹 후보 영역에서 휘도(luminance) 성분의 히스토그램을 구한 다음, 이 히스토그램을 이용하여 thresholding 기법으로 눈썹을 검출한다. 일반적으로 이런 히스토그램은 하나의 bin을 갖는 peak나 valley가 무수히 많아 threshold 간을 결정하는데 어려움이 있다. 이런 어려움을 극복하고 좀더 쉽게 threshold 값을 찾기 위해 이런 peak나 valley를 제거해 히스토그램을 변형한다. 제안된 알고리즘은 얼굴 영역 검출부, 얼굴 요소 검출부, 그리고 FCP 추출부 등의 세 부분으로 구성되어있다.

  • PDF

군집을 이루는 자궁 경부암 세포 인식에 관한 연구 (A Study on Recognition of Clustered Cells in Uterine Cervical Pap-Smear Image)

  • 최예찬;김선아;김호영;김백섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.511-513
    • /
    • 2000
  • PaP Smear 테스트는 자궁 경부암 진단에 가장 효율적인 방법으로 알려져 있다. 그러나 이 방법은 높은 위 음성률(false negative error, 15~50%)을 나타내고 있다. 이런 큰 오류율은 주로 다량의 세포 검사에 기인하여, 자동화 시스템의 개발이 절실히 요구되고 있다. 본 논문은 자궁 경부암의 특징인 군집을 이루는 암세포를 인식할 수 있는 시스템을 제안한다. 시스템은 두 부분으로 나누어진다. 첫 단계에서는 저 배율(100배)에서 간단한 영상처리와 최소 근접 트리(Minimum Spanning Tree)를 통해 군집을 이루는 세포를 찾는다. 두 번째 단계서는 고 배율(400배)로 확대하여 군집 세포들로부터 여러 가지 특징을 추출한 후 KNN(k-Neighbor) 방법을 통해 인식하는 단계이다. 50개의 영상 (640X 480, RGB True Color 25 개의 100배 영상 , 25개의 400배 영상)이 실험에 사용되었다. 한 영상을 처리하는데 약 3초 (2.984초) 소요되었으며, 이는 region growing(20초)나 split and merge(58초) 방법 보다 덜 소요되었다. 100배 영상에서 정상과 비정상의 두 그룹으로 나누었을 경우에는 96%의 높은 인식율을 나타내었으나 비정상을 다시 5개의 그룹으로 나누었을 때는 45%로 나타내었다. 이는 영역 추출(segmentation) 단계에서 오류와 트레이닝 데이터의 비정확성에 기인한다. 400배 영상에서는 각각 92%와 30%로 나타내었다. 이는 영역추출 단계에서 사용한 Watershed 방법의 오류로 기인한 것으로 본다.

  • PDF