현재, 영상처리는 군사, 의료, 산업 등의 넓고 다양한 분야에서 활용되고 있으며, 영상에 첨가된 잡음은 영상의 질을 저하시키다. 따라서, 잡음 제거는 영상 인식, 에지 검출, 영상 분할 등의 영상 처리를 수행하기 전에 필수적인 과정이다. 이러한 영상에 첨가된 잡음을 제거하기 위한 연구가 활발히 진행되고 있으며, 영상에 첨가되는 잡음에는 AWGN(additive white Gaussian noise)이 대표적이다. 본 논문에서는 영상에 첨가된 AWGN을 완화하기 위해, 에지 검출 및 표준편차를 이용한 필터를 합성하여 처리하는 알고리즘을 제안하였다.
인간의 얼굴 검출은 비디오 감시, 휴먼 컴퓨터 인터페이스, 얼굴 인식, 그리고 얼굴 이미지 데이터 베이스 관리와 같은 분야에 중요한 역할을 한다. 본 논문에서는 복잡한 배경뿐만 아니라 다양한 조명 조건에서 색 이미지 변화들의 폭넓은 변화를 처리할 수 있도록 새로운 조명 보정 기술과 이웃 화소들을 조합한 간단하고 빠른 얼굴 검출 방법을 제안한다. 색상 유사도를 기반으로 각 그룹을 추출하여 후보 얼굴 영역을 생성한다. 각각의 얼굴 후보 영역을 증명하기 위하여 눈, 입의 경계맵을 구성한다. 본 논문에서 제안한 방법이 단순하고 매우 빠른 수행능력을 보여주었으며, 89%의 얼굴 검출 수행능력을 나타내었다.
Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.
본 논문은 문자 인식 등을 통한 문서 자동 처리 시스템을 위해서 스캔 과정에서 발생할 수 있는 문서의 기울기를 정확하게 검출하는 기법을 제안한다. 제안한 알고리즘은 처리 속도 향상을 위해 영상을 축소한 다음 형태학적 연산과 연결 성분 분석 방법으로 기울기 검출 대상 영역(ROI)을 먼저 설정한 후 설정된 영역 내에서 문서의 기울기 정보를 가지고 있는 기준선을 탐색하는 방법으로 정확하게 기울어진 각도를 검출할 수 있게 하였다. 기존의 형태학적 연산을 기반으로 한 기울기 검출 기법과 비교하고 다양한 종류의 대용량 문서 영상을 대상으로 한 실험 및 분석을 통해 제안한 기울기 검출 방법의 정확도 및 효율성을 증명하였다.
It is considered that the construction industry is one of the pivotal players in the national economy in terms of Gross Domestic Production (GDP) and employment. Behind the positive role of this industrial sector to the national economy, the construction industry generates approximately 50 % of the total waste generation from all the industrial sectors. There are several measures to mitigate the adverse impacts of the construction waste such as reduce, reuse and recycle. Recycling would be one of the effective strategies for waste minimisation, which would be able to reduce the demand upon new resources as well as enhance reusing the construction materials on sites. The automated construction waste classification system would make it possible not only to reduce the amount of labour input but also mitigate the possibility of errors during the manual classification process. In this study, we proposed an automated waste segmentation and classification system for recycling the construction and demolition waste in the real construction site context. Since the practical application to the real-world construction sites was one of the significant factors to develop the system, a YOLACT (You Only Look At CoefficienTs) algorithm was chosen to conduct the study. In this study, it is expected that the proposed system would make it possible to enhance the productivity as well as the cost efficiency by reducing the manpower for the construction and demolition waste management at the construction site.
The development of artificial intelligence in the field of construction and construction is revitalizing. The performance and development techniques of artificial intelligence are changing rapidly, but if you look at the cases of domestic construction sites, they are using technologies from 5 to 7 years ago. It is right to follow a stable method in consideration of commercialization, but the previous AI development method requires more manpower and time to develop than the current technology. In addition, in order to actively utilize artificial intelligence technology, customized artificial intelligence is required to be applied to ever-changing changes in construction sites. it is the reality As a result, even if good AI technology is secured at the construction site, it is reluctant to introduce it because there is no advantage in terms of time and cost compared to the existing method to apply it only to some processes. Currently, an AI technique with a faster development process and accurate recognition has been developed to cope with a fluid situation, so it will be important to understand and introduce the rapidly changing AI development method.
심층학습은 많은 양의 데이터셋을 학습에 활용하여 객체 분류, 검출, 분할 등의 영상 분석에 탁월한 성능을 나타내고 있다. 본 논문에서는 데이터셋의 종류가 다양한 얼굴 표정인식 데이터셋들을 활용하여 학습 데이터셋의 특성이 심층학습 성능에 영향을 줄 수 있음을 확인하고, 각 학습 데이터셋에 적합한 심층학습 모델의 구성 요소를 설정하는 방법을 제안한다. 제안하는 방법은 심층학습 모델의 성능에 영향을 주는 구성 요소인 활성함수, 그리고 최적화 알고리즘을 유전 알고리즘을 이용하여 선정한다. CK+, MMI, KDEF 데이터셋에 대해서 널리 활용되고 있는 심층학습 모델의 각 구성 요소별 다양한 알고리즘을 적용하여 성능을 비교 분석하고, 유전 알고리즘을 적용하여 최적의 구성 요소를 선정할 수 있음을 시뮬레이션을 통하여 확인한다.
표고의 외관 특징들은 표고의 재배 시 생육상태의 정량적 측정을 위해서, 표고의 건조 시 건조 성능을 나타내는 정량적 지표로서, 그리고 건표고의 품질을 판정하는 요인으로서 중요한 역할을 한다. 본 논문에서는 컴퓨터 시각시스템 및 신경회로망 기술을 적용하여 표고의 갓 및 내피에 고루 분포되어 있는 외관특징을 정량적으로 추출하는 알고리즘을 개발하였다. 기존의 영상 처리 과정에서 유도되는 경험적 판정규칙 또는 명확한 수치적 판정조건에 의한 등급판정은 입력데이타의 결핍 또는 애매모호성에 따른 오차가 발생하기 쉽다. 신경회로망을 이용한 영상인식 기능을 도입함으로써 다양하고 애매모호한 표고의 외관 영상특징들을 효율적으로 처리하여 기존 영상처리 알고리즘에서 발생하는 오차를 개선하였다. 본 논문에서 제안하는 알고리즘은 표고의 갓과 내피면의 인식 및 특징 분할, 꼭지부의 검출, 제거 및 재생 등을 포함한다. 제안한 알고리즘에 의거하여 건표고의 등급판정에 주요한 품질인자들을 추출하고 정량화 하였다. 그리고 알고리즘의 개발은 흑백의 다치입력영상을 이용하여 수행하였다.
본 논문은 얼굴 요소 중 눈썹을 검출하기 위한 기법으로, 눈썹은 얼굴 인식이나 표정 인식, 얼굴 애니메이션에 중요한 역할을 하는 요소이다. 색상 영역 분할을 통해 얼굴 영역을 검출한 다음, 형판 정합(template matching)을 통해 눈을 검출한다. 눈썹은 눈 바로 위에 위치하므로 검출된 눈의 위치 값을 이용하여 눈썹 후보 영역을 설정한다. 이렇게 설정된 눈썹 후보 영역에서 휘도(luminance) 성분의 히스토그램을 구한 다음, 이 히스토그램을 이용하여 thresholding 기법으로 눈썹을 검출한다. 일반적으로 이런 히스토그램은 하나의 bin을 갖는 peak나 valley가 무수히 많아 threshold 간을 결정하는데 어려움이 있다. 이런 어려움을 극복하고 좀더 쉽게 threshold 값을 찾기 위해 이런 peak나 valley를 제거해 히스토그램을 변형한다. 제안된 알고리즘은 얼굴 영역 검출부, 얼굴 요소 검출부, 그리고 FCP 추출부 등의 세 부분으로 구성되어있다.
PaP Smear 테스트는 자궁 경부암 진단에 가장 효율적인 방법으로 알려져 있다. 그러나 이 방법은 높은 위 음성률(false negative error, 15~50%)을 나타내고 있다. 이런 큰 오류율은 주로 다량의 세포 검사에 기인하여, 자동화 시스템의 개발이 절실히 요구되고 있다. 본 논문은 자궁 경부암의 특징인 군집을 이루는 암세포를 인식할 수 있는 시스템을 제안한다. 시스템은 두 부분으로 나누어진다. 첫 단계에서는 저 배율(100배)에서 간단한 영상처리와 최소 근접 트리(Minimum Spanning Tree)를 통해 군집을 이루는 세포를 찾는다. 두 번째 단계서는 고 배율(400배)로 확대하여 군집 세포들로부터 여러 가지 특징을 추출한 후 KNN(k-Neighbor) 방법을 통해 인식하는 단계이다. 50개의 영상 (640X 480, RGB True Color 25 개의 100배 영상 , 25개의 400배 영상)이 실험에 사용되었다. 한 영상을 처리하는데 약 3초 (2.984초) 소요되었으며, 이는 region growing(20초)나 split and merge(58초) 방법 보다 덜 소요되었다. 100배 영상에서 정상과 비정상의 두 그룹으로 나누었을 경우에는 96%의 높은 인식율을 나타내었으나 비정상을 다시 5개의 그룹으로 나누었을 때는 45%로 나타내었다. 이는 영역 추출(segmentation) 단계에서 오류와 트레이닝 데이터의 비정확성에 기인한다. 400배 영상에서는 각각 92%와 30%로 나타내었다. 이는 영역추출 단계에서 사용한 Watershed 방법의 오류로 기인한 것으로 본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.