• Title/Summary/Keyword: Image Ratio

Search Result 2,755, Processing Time 0.025 seconds

Image-adaptive Lossless Image Compression (영상 적응형 무손실 영상 압축)

  • 원종우;오현종;장의선
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.246-256
    • /
    • 2004
  • In this paper, we proposed a new lossless image compression algorithm. Lossless image compression has been used in the field that requires the accuracy and precision. Thus, application areas using medical unaging, prepress unaging, image archival systems, precious artworks to be preserved, and remotely sensed images require lossless compression. The compression ratio from lossless image compression has not been satisfactory, thus far. So, new method of lossless image compression has been investigated to get better compression efficiency. We have compared the compression results with the most typical compression methods such as CALIC and JPEG-LS. CALIC has shown the best compression-ratio among the existing lossless coding methods at the cost of the extensive complexity by three pass algorithm. On the other hand, JPEG-LS's compression-ratio is not higher than CALIC, but was adopted as an international standard of ISO because of the low complexity and fast coding process. In the proposed method, we adopted an adaptive predictor that can exploit the characteristics of individual images, and an adaptive arithmetic coding with multiple probability models. As a result, the proposed algorithm showed 5% improvement in compression efficiency in comparison with JPEG-LS and showed comparable compression ratio with CALIC.

A Study on Necktie Image of Striped Pattern according to Area-Ratio Variation of Chromatic and Achromatic Colors (무채색과 유채색의 면적비 변와에 따른 스트라이프 패턴의 넥타이 이미지 연구)

  • Sung, Nam-Suk;Choi, Su-Koung
    • Journal of the Korean Society of Costume
    • /
    • v.59 no.4
    • /
    • pp.67-81
    • /
    • 2009
  • This study aims to characterize the effect of different combinations of chromatic-achromatic colors and 1:2:3 area-ratio variation of stripe necktie, and gender on the image of male wearer. The experimental materials developed for this study are a set of stimuli and response scales. The stimuli consist of 84 color pictures manipulated with every combination of 12 different colors and 7 different area-ratio. The 7-point scale designed for visual evaluation of image formation included 26 bipolar adjectives. The subjects were 2016 undergraduate students in Gyeongnam, Seoul, Busan, and Daegu areas. The results of this study were as follows. The analyses of images of male wearer in terms of combinations of chromatic-achromatic colors and I :2:3 area-ratio variation of oblique stripe necktie reveal that the concerned factors are of five characteristic dimensions of youth-activity, ability, attractiveness, appeal, and warmness. In addition, it has been found that individual images of male wearer are affected by observer's gender as well as combinations of chromatic-achromatic colors and 1:2:3 area-ratio variation of stripe neckties and that those images vary with every combination of each factor. The study results are highly expected to be used as useful sources in developing necktie designs.

A STUDY ON THE CENTRAL PLANE OF IMAGE LAYER IN PANORAMIC RADIOGRAPH (파노라마방사선사진에 있어서 상층중심면에 관한 연구)

  • Lee Mun Bai;Park Chang Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 1986
  • The purpose of this investigation was to locate the central plane of the image layer on the panoramic machine relative to a specific point on the machine. In the study of the central plane of the image layer of panoramic radiograph, using the Morrita Company PANEX-EC a series of 33 exposures were taken with the 4-5 experimental pins placed in the holes of the plastic model plate, then evaluated by human eye. The author analyzed the central plane of the image layer by Mitutoyo-A-221 and calculated horizontal and vertical magnification ratio in the central plane of the image layer determined experimentally. The results were as follows: 1. The location of the central plane of the image layer determined experimentally was to lateral, compared with manufactural central plane. 2. Horizontal magnification ratio in the central plane of the image layer determined experimentally was 9.25%. 3. Vertical magnification ratio in the central plane of the image layer determined experimentally was 9.17%.

  • PDF

Color Image Vector Quantization Using Enhanced SOM Algorithm

  • Kim, Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1737-1744
    • /
    • 2004
  • In the compression methods widely used today, the image compression by VQ is the most popular and shows a good data compression ratio. Almost all the methods by VQ use the LBG algorithm that reads the entire image several times and moves code vectors into optimal position in each step. This complexity of algorithm requires considerable amount of time to execute. To overcome this time consuming constraint, we propose an enhanced self-organizing neural network for color images. VQ is an image coding technique that shows high data compression ratio. In this study, we improved the competitive learning method by employing three methods for the generation of codebook. The results demonstrated that compression ratio by the proposed method was improved to a greater degree compared to the SOM in neural networks.

  • PDF

A Study on Dose and Image Quality according to X-ray Photon Detection Method in Digital Radiography System (Digital Radiography System에서 X선 광자 검출 방식에 따른 선량 및 화질 특성에 관한 연구)

  • Hong, Sun Suk;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.247-253
    • /
    • 2013
  • The purpose is a comparative evaluation in the DR System according to the dosimetry and image quality of the quantitative and objective via Direct digital radiography, Indirect digital radiography, Image intensifier (Charge Coupled Device type) digital radiography. The experimental method used rando phantom and measured the entrance surface dose. And through using the measured entrance surface dose and then using the PCXMC program were evaluated risk due to irradiation and the effective dose. SNR and NPS and CNR were measured and analyzed by using 21cm acryl phantom. Significance of measured value was evaluated by statistics method. Entrance surface dose, major organ dose, effective dose all of them were measured the lowest rated in direct DR when it is on the basis of direct DR dose, high-dose ratio were measured in I.I DR approximately 1.3 times, indirect DR approximately 2.4 times. Risk in accordance with radiation also was measured same as dose ratio. On the conclusion that SNR measurement result based on direct DR SNR measurements, low-SNR ratio were measured in I.I DR approximately 7.25 times, indirect DR approximately 1.48 times. On the conclusion that CNR measurement result based on direct DR CNR measurements, high-dose ratio were measured in I.I type DR approximately 1.16 tims and low-dose ratio were measured in indirect DR approximately 0.87 times. Therefore Direct DR system using a-selenium sensing element to detect x-ray photon is thought effectively at the examination such as infant to sensitive irradiation and the genital gland. Because quality image is built by low dose. Also when it is necessary that image test requiring many diagnosis information, indirect DR system is thought effectively.

An Image Quality Evaluation Model for Optical Strip Signal-to-Noise Ratio in the Target Area of High Temperature Forgings

  • Ma, Hongtao;Zhao, Yuyang;Feng, Yiran;Lee, Eung-Joo;Tao, Xueheng
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Under the time-varying temperature, the high-temperature radiation of forgings and the change of reflection characteristics of oxide skin on the surface of forgings lead to the difficulty of obtaining images to truly reflect the geometric characteristics of forgings. It is urgent to study the clear and reliable acquisition method of hot forging feature image under time-varying temperature to meet the requirements of visual measurement of hot geometric parameters of forgings. Based on this, this chapter first puts forward the quality evaluation method of forging feature image, which provides guarantee for the accurate evaluation of feature image quality. Furthermore, the factors that affect the image quality, such as the radiation characteristics of forgings and the photographic characteristics of cameras, are analyzed, and the imaging spectrum which can effectively suppress the radiation intensity of forgings is determined. Finally, aiming at the problem that the quality of image acquisition is difficult to guarantee due to the drastic change of radiation intensity of forgings under time-varying temperature, an image acquisition method based on minimum signal-to-noise ratio (SNR) based laser light intensity adaptation is proposed, which significantly improves the definition of feature light strips in forging images at high temperature, and finally realizes the clear acquisition of feature images of large-scale hot forging under time-varying temperature.

Analysis of Printed Image Depending on Mixing Ratios of Softwood and Hardwood fibers Using Image Analyzer and CLSM (화상분석기와 CLSM을 이용한 침.활엽수 섬유의 배합비에 따른 인쇄화상 분석)

  • 이장호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.25-31
    • /
    • 2002
  • The purpose of this study was to analyze how the fiber properties and mixing ratio of softwood and hardwood pulp affect on roundness of printed image. Softwood pulp and hardwood pulp were refined to 400 and 600ml CSF by Valley beater and handsheets of 70 g/$m^2$ basis weight were made at different mixing ratios of hardwood and softwood pulp. The roundness, dot area, and shape of the printed dot were measured by Image Analyzer. The depths and shapes of the acridine orange penetration into paper were measured by CLSM. With higher mixing ratio of hardwood pulp, the paper showed higher air-permeability and better formation, especially at lower freeness. The roundness of the printed image became better and the dot size became smaller when the amount of hardwood pulp increased. Penetration depth of acridine orange by CLSM became greater and roundness increased to real circle when the amount of hardwood pulp increased. It was thought that higher mixing ratio of hardwood fibers resulted in efficient penetration by better formation with uniform micro-pore distribution and it increased roundness. It was thought that fiber properties and mixing ratio affected the structure of paper and the shape of the printed dot. This study showed that the measurement of depth of the liquid penetration into paper without destruction and contact was feasible. Moreover, this method showed that the shape of the liquid penetration was measurable.

Effect of the Signal-to-Noise Power Spectra Ratio On MTF compensated EOC images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.202-207
    • /
    • 2002
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are generated and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used in MTF compensation for EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise power spectra ratio is the only factor in the determination of Wiener filter. In this paper, MTF compensation in IRPE at KGS is introduced and MTF compensated EOC 1R images are generated using Wiener filters with various signal-to-noise power spectra ratios. MTF compensated EOC 1R images are correlated with EOC 1R images for observing linearities between them. As a result, the effect of signal-to-noise power spectra ratio is shown on MTF compensated EOC 1R images.

  • PDF

Effect of the Signal-to-Noise Power Spectra Ratio on MTF Compensated EOC Images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are retrieved and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used for MTF compensation of EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise (SNR) power spectra ratio is the only variable which determines the shape of Wiener filter In this paper, MTF compensation in IRPE at KGS is briefly addressed, and MTF compensated EOC images are generated using Wiener filters with various SNR power spectra ratios. MTF compensated EOC images are compared with original EOC 1R images to observe correlations between them. As a result, the effect of SNR power spectra ratio on MTF compensated EOC images is shown.

Study on Measuring Geometrical Modification of Document Image in Scanning Process (스캐닝 과정에서 발생하는 전자문서의 기하학적 변형감지에 관한 연구)

  • Oh, Dong-Yeol;Oh, Hae-Seok;Rhew, Sung-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1869-1876
    • /
    • 2009
  • Scanner which is a kind of optical devices is used to convert paper documents into document image files. The assessment of scanned document image is performed to check if there are any modification on document image files in scanning process. In assessment of scanned documents, user checks the degree of skew, noise, folded state and etc This paper proposed to how to measure geometrical modifications of document image in scanning process. In this study, we check the degree of modification in document image file by image processing and we compare the evaluation value which means the degree of modification in each items with OCR success ratio in a document image file. To analyse the correlation between OCR success ratio and the evaluation value which means the degree of modification in each items, we apply Pearson Correlation Coefficient and calculate weight value for each items to score total evaluation value of image modification degrees on a image file. The document image which has high rating score by proposed method also has high OCR success ratio.