• Title/Summary/Keyword: Image Ratio

Search Result 2,769, Processing Time 0.032 seconds

A Study on the Chest Radiography with Diseases in Consideration of Image Qualify and Patient Exposure (흉부질환의 화질과 피폭을 고려한 촬영조건의 연구)

  • Lee, Man-Koo;Hayashi, Taro;Ishida, Yuji
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.56-62
    • /
    • 1997
  • To evaluated the image quality and the patient exposure for the chest radiography, its fundamental imaging properties were investigated. The basic imaging properties were evaluated by measuring characteristic curves, relative speeds, average gradient, and patient exposure dose. The image qualities were evaluated by using a rotating meter. It was found that the film gradient of SRO750/SRH system was 3.13 and that of SRO750/HR-C30 was 1.77. The ratio of SRO1000/TMH to FS/RP-1 was 1 to 18.2. It was possible to visualize the static image when the exposure time was less than 2.5 msec in patient that had respiratory excessive motion, heart beat and natural physical motion, and less than 8.5 msec in normal. The ratio of medical exposure dose compared with our method was 1 to 25 in the routine chest radiography and maximum was 1 to 70. In estimation of the image quality in same cases, we found that the image of SRO1000/SRH and TMH of super sensitive systems was the same results. We found that these super sensitive screen-film systems were available for the chest radiography considering the relationship between the image quality and patient exposure.

  • PDF

Performance analysis of improved hybrid median filter applied to X-ray computed tomography images obtained with high-resolution photon-counting CZT detector: A pilot study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3380-3389
    • /
    • 2022
  • We evaluated the performance of an improved hybrid median filter (IHMF) applied to X-ray computed tomography (CT) images obtained using a high-resolution photon-counting cadmium zinc telluride (CZT) detector. To study how the proposed approach improves the image quality, we measured the noise levels and the overall CT-image quality. We established a CZT imaging system with a detector length of 5.12 cm and thickness of 0.3 cm and acquired phantom images. To evaluate the efficacy of the proposed filter, we first modeled two conventional median filters. Subsequently, we were able to achieve a normalized noise power spectrum result of ~10-8 mm2, and furthermore, the proposed method improved the contrast-to-noise ratio by a factor of ~1.51 and the coefficient of variation by 1.55 relative to the counterpart values of the no-filter image. In addition, the IHMF exhibited the best performance among the three filters considered as regards the peak signal-to-noise ratio and no-reference-based image-quality evaluation parameters. Thus, our results demonstrate that the IHMF approach provides a superior image performance over conventional median filtering methods when applied to actual CZT X-ray CT images.

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.

An Experimental Investigation of Air Fuel Ratio Measurement using Laser Induced Acetone Fluorescence (아세톤 형광을 이용한 공연비 측정 기법 연구)

  • Park Seungjae;Huh Hwanil;Oh Seungmook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.353-356
    • /
    • 2002
  • Planar laser induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Preliminary investigation was performed to measure quantitative air excess ratio distribution in an engine fueled with LPG. It is known that fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone was excited by KrF excimer laser (248nm) and its fluorescence image was acquired by ICCD camera with a cut-of filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile was suggested. Raw images were divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which was taken by a calibration process, were converted to air excess ratio distribution. This investigation showed instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

  • PDF

Adaptive Switching Filtering Algorithm for SAP noise (SAP 잡음 제거를 위한 적응적 스위칭 필터링 알고리즘)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.25-35
    • /
    • 2022
  • The SAP(salt-and-pepper) noise changes the pixel value to the maximum and minimum values of the dynamic region of the pixel. For this reason, unlike white Gaussian noise, SAP noise can predict the ratio of noise relatively easily. Because the condition of the neighboring pixels that can be referenced changes according to the noise ratio, it is necessary to apply different noise reduction methods according to the noise ratio. This paper proposes an adaptive switching filtering algorithm which can eliminates the SAP noise. It consists of two phases. It first detects the location of the SAP noise and calculates the noise ratio. After that, the image is reconstructed using different methods depending on which of the three sections the calculated noise ratio belongs to. As a result of the experiment, the proposed method showed superior objective and subjective image quality compared to the previous methods such as MF, AFSWMF, NAMF and RWMF.

Usefulness of Xact-bone for the Resolution Advancement of Gamma Camera Image (감마카메라 영상에서 분해능 향상을 위한 Xact-bone의 유용성 평가)

  • Kim, Jong-Pil;Yoon, Seok-Hwan;Lim, Jung-Jin;Woo, Jae-Ryong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2011
  • Purpose: The Boramae Hospital are currently using Wide beam reconstruction (WBR: UltraSPECT, Israel) to improve the resolution. The Xact-bone belongs to the WBR. It has been reported that Xact-bone helps us to improve image resolution and contrast. This study will be evaluated clinical usefulness of Xact-bone method. Materials and Methods: The usefulness evaluation of Xact-bone method was analyzed in resolution test and contrast ratio. The resolution test in Planar image were obtained from Full width at half maximum (FWHM) by using capillary tube. And the contrast ratio was obtained from Bone and Soft tissue (B/S) ratio values that were acquired from bone scan study of 50 patients before and after using the Xact-bone method. We prepared the Triple Line Source Phantom, NEMA IEC Body Phantom and Standard Jaszczak Phantom to acquire the FWHM and Contrast Ratio values of Single photon emission computed tomography (SPECT) image. Subsequently we compared among the Filtered backprojection (FBP), Orderd subset expectation maximization (OSEM) and Xact-Bone image. Results: The results of the planar Xact-bone data improved resolution about 20% by using capillary tube. In addition it was improved B/S ratio about 15%. When using Triple Line Source Phantom, SPECT Xact-bone data improved resolution for both FBP, OSEM methods about 20% and 10%, respectively. Contrast ratio in each spheres has also been increased for both methods that using NEMA IEC body Phantom and Standard Jaszczak Phantom. Conclusion: When we were using Xact-bone method, we could see to improve the resolution and Contrast ratio as compared to do not use the Xact-bone method. Accordingly, by using WBR's Xact-bone method is expected to improve the image quality. However, when introducing new software, it is needed to match the characteristics of the hospital protocol and clinical application.

  • PDF

New Algorithm for Arbitrary-ratio Image Resizing in DCT Domain (DCT 영역에서 영상의 임의 비율 크기 변환을 위한 새로운 알고리즘)

  • Kim, Yong-Jae;Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.113-123
    • /
    • 2007
  • In Ubiquitous communication environment, various conversions of images are essential, and most digital images are compressed by standard methods such as the Joint Photographic Expert Group (JPEG) and Motion Picture Expert Group (MPEG) which are based on the discrete cosine transform (DCT). In this paper, various image resizing algorithms in the DCT domain are analyzed, and a new image resizing algorithm, which shows superior performance compared with the conventional methods, is proposed. For arbitrary-ratio image resizing in the DCT domain, several blocks of $8{\times}8$ DCT coefficients are converted into one block using the conversion formula in the proposed algorithm, and the size of the inverse discrete cosine transform (IDCT) is decided optimally. The performance is analyzed by comparing the peak signal to noise ratio (PSNR) between original images and converted images. The performance of the proposed algorithm is better than that of the conventional algorithm, since the correlation of pixels in images is utilized more efficiently.

Development and application of simulator for spotlight SAR image formation and quality assesment using RMA (RMA를 이용한 Spotlight SAR 영상형성 및 품질평가를 위한 시뮬레이터 개발 및 구현)

  • Kwak, Jun-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.183-194
    • /
    • 2011
  • Synthetic aperture radar (SAR) is widely used because of high resolution imaging capability in all weather and day/night condition. In this paper development of Spotlight SAR simulator is proposed for image quality analysis. Proposed SAR simulator is based on the SAR system design parameters so that SAR image performance can be expected which is essential throughout the full system development procedure from the initial concept design stage to the final in-flight calibration and validation stage. The raw data of ideal point target is first generated by taking account of the flight and imaging geometry and the various SAR system design parameters, and the Spotlight image formation algorithm is implemented in order to obtain the point target response. Finally the image quality of the generated raw data is analyzed in terms of spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio.

Feasibility Study of Non Local Means Noise Reduction Algorithm with Improved Time Resolution in Light Microscopic Image (광학 현미경 영상 기반 시간 분해능이 향상된 비지역적 평균 노이즈 제거 알고리즘 가능성 연구)

  • Lee, Youngjin;Kim, Ji-Youn
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.623-628
    • /
    • 2019
  • The aim of this study was to design fast non local means (FNLM) noise reduction algorithm and to confirm its application feasibility in light microscopic image. For that aim, we acquired mouse first molar image and compared between previous widely used noise reduction algorithm and our proposed FNLM algorithm in acquired light microscopic image. Contrast to noise ratio, coefficient of variation, and no reference-based evaluation parameter such as natural image quality evaluator (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE) were used in this study. According to the result, our proposed FNLM noise reduction algorithm can achieve excellent result in all evaluation parameters. In particular, it was confirmed that the NIQE and BRISQUE evaluation parameters for analyzing the overall morphologcal image of the tooth were 1.14 and 1.12 times better than the original image, respectively. In conclusion, we demonstrated the usefulness and feasibility of FNLM noise reduction algorithm in light microscopic image of small animal tooth.

On Improving Compression Ratio of JPEG Using AC-Coefficient Separation (교류 계수 분할 압축에 의한 JPEG 정지영상 압축 효율 향상 기법 연구)

  • Ahn, Young-Hoon;Shin, Hyun-Joon;Wee, Young-Cheul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • In this paper, we introduce a novel entropy coding method to improve the JPEG image compression standard. JPEG is one of the most widely used image compression methods due to its high visual quality for the compression ratio, and especially because of its high efficiency. Based on the observation that the blocks of data fed to the entropy coder usually contain consecutive sequences of numbers with small magnitudes including 0, 1, and -1, we separate those sequences from the data and encode them using a method dedicated to those values. We further improve the compression ratio based on the fact that this separation makes the lengths of blocks much shorter. In our experiment, we show that the proposed method can outperform the JPEG standard preserving its visual characteristics.