• Title/Summary/Keyword: Image Processing Method

Search Result 4,591, Processing Time 0.034 seconds

Application of Traffic Conflict Decision Criteria for Signalized Intersections Using an Individual Vehicle Tracking Technique (개별차량 추적기법을 이용한 신호교차로 교통상충 판단기준 정립 및 적용)

  • Kim, Myung-Seob;Oh, Ju-Taek;Kim, Eung-Cheol;Jung, Dong-Woo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.173-184
    • /
    • 2008
  • Development of an accident estimation model based on accident data can be made after accident occurrences. However, the taking of historical accident data is not easy, and there have been differences between real accident data and police-reported accident data. Also, another difficult shortcoming is that historical traffic accident data better consider driver behavior or intersection characteristics. A new method needs to be developed that can predict accident occurrences for traffic safety improvement in black spots. Traffic conflict decision techniques can acquire and analyze data in time and space, requiring less data collection through investigation. However, there are shortcomings: as existing traffic conflict techniques do not operate automatically, the analyst's opinion could easily affect the study results. Also, existing methods do not consider the severity of traffic conflicts. In this study, the authors presented traffic conflict decision criteria which consider conflict severity, including opposing left turn traffic conflict and cross traffic conflict decision criteria. In order to test these criteria, the authors acquired three signalized intersection images (two intersections in Sungnam city and one intersection in Paju) and analyzed the acquired images using image processing techniques based on individual vehicle tracking technology. Within the analyzed images, level 1 conflicts occurred 343 times over three intersections. Some of these traffic conflicts resulted in level 3 conflict situations. Level 3 traffic conflicts occurred 25 times. From the study results, the authors found that traffic conflict decision techniques can be an alternative to evaluate traffic safety in black spots.

Wildfire-induced Change Detection Using Post-fire VHR Satellite Images and GIS Data (산불 발생 후 VHR 위성영상과 GIS 데이터를 이용한 산불 피해 지역 변화 탐지)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1389-1403
    • /
    • 2021
  • Disaster management using VHR (very high resolution) satellite images supports rapid damage assessment and also offers detailed information of the damages. However, the acquisition of pre-event VHR satellite images is usually limited due to the long revisit time of VHR satellites. The absence of the pre-event data can reduce the accuracy of damage assessment since it is difficult to distinguish the changed region from the unchanged region with only post-event data. To address this limitation, in this study, we conducted the wildfire-induced change detection on national wildfire cases using post-fire VHR satellite images and GIS (Geographic Information System) data. For GIS data, a national land cover map was selected to simulate the pre-fire NIR (near-infrared) images using the spatial information of the pre-fire land cover. Then, the simulated pre-fire NIR images were used to analyze bi-temporal NDVI (Normalized Difference Vegetation Index) correlation for unsupervised change detection. The whole process of change detection was performed on a superpixel basis considering the advantages of superpixels being able to reduce the complexity of the image processing while preserving the details of the VHR images. The proposed method was validated on the 2019 Gangwon wildfire cases and showed a high overall accuracy over 98% and a high F1-score over 0.97 for both study sites.

Development of Crack Detection System for Highway Tunnels using Imaging Device and Deep Learning (영상장비와 딥러닝을 이용한 고속도로 터널 균열 탐지 시스템 개발)

  • Kim, Byung-Hyun;Cho, Soo-Jin;Chae, Hong-Je;Kim, Hong-Ki;Kang, Jong-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.65-74
    • /
    • 2021
  • In order to efficiently inspect rapidly increasing old tunnels in many well-developed countries, many inspection methodologies have been proposed using imaging equipment and image processing. However, most of the existing methodologies evaluated their performance on a clean concrete surface with a limited area where other objects do not exist. Therefore, this paper proposes a 6-step framework for tunnel crack detection deep learning model development. The proposed method is mainly based on negative sample (non-crack object) training and Cascade Mask R-CNN. The proposed framework consists of six steps: searching for cracks in images captured from real tunnels, labeling cracks in pixel level, training a deep learning model, collecting non-crack objects, retraining the deep learning model with the collected non-crack objects, and constructing final training dataset. To implement the proposed framework, Cascade Mask R-CNN, an instance segmentation model, was trained with 1561 general crack images and 206 non-crack images. In order to examine the applicability of the trained model to the real-world tunnel crack detection, field testing is conducted on tunnel spans with a length of about 200m where electric wires and lights are prevalent. In the experimental result, the trained model showed 99% precision and 92% recall, which shows the excellent field applicability of the proposed framework.

A Study on the Estimation of Multi-Object Social Distancing Using Stereo Vision and AlphaPose (Stereo Vision과 AlphaPose를 이용한 다중 객체 거리 추정 방법에 관한 연구)

  • Lee, Ju-Min;Bae, Hyeon-Jae;Jang, Gyu-Jin;Kim, Jin-Pyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.279-286
    • /
    • 2021
  • Recently, We are carrying out a policy of physical distancing of at least 1m from each other to prevent the spreading of COVID-19 disease in public places. In this paper, we propose a method for measuring distances between people in real time and an automation system that recognizes objects that are within 1 meter of each other from stereo images acquired by drones or CCTVs according to the estimated distance. A problem with existing methods used to estimate distances between multiple objects is that they do not obtain three-dimensional information of objects using only one CCTV. his is because three-dimensional information is necessary to measure distances between people when they are right next to each other or overlap in two dimensional image. Furthermore, they use only the Bounding Box information to obtain the exact coordinates of human existence. Therefore, in this paper, to obtain the exact two-dimensional coordinate value in which a person exists, we extract a person's key point to detect the location, convert it to a three-dimensional coordinate value using Stereo Vision and Camera Calibration, and estimate the Euclidean distance between people. As a result of performing an experiment for estimating the accuracy of 3D coordinates and the distance between objects (persons), the average error within 0.098m was shown in the estimation of the distance between multiple people within 1m.

The Method for Colorizing SAR Images of Kompsat-5 Using Cycle GAN with Multi-scale Discriminators (다양한 크기의 식별자를 적용한 Cycle GAN을 이용한 다목적실용위성 5호 SAR 영상 색상 구현 방법)

  • Ku, Wonhoe;Chun, Daewon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1415-1425
    • /
    • 2018
  • Kompsat-5 is the first Earth Observation Satellite which is equipped with an SAR in Korea. SAR images are generated by receiving signals reflected from an object by microwaves emitted from a SAR antenna. Because the wavelengths of microwaves are longer than the size of particles in the atmosphere, it can penetrate clouds and fog, and high-resolution images can be obtained without distinction between day and night. However, there is no color information in SAR images. To overcome these limitations of SAR images, colorization of SAR images using Cycle GAN, a deep learning model developed for domain translation, was conducted. Training of Cycle GAN is unstable due to the unsupervised learning based on unpaired dataset. Therefore, we proposed MS Cycle GAN applying multi-scale discriminator to solve the training instability of Cycle GAN and to improve the performance of colorization in this paper. To compare colorization performance of MS Cycle GAN and Cycle GAN, generated images by both models were compared qualitatively and quantitatively. Training Cycle GAN with multi-scale discriminator shows the losses of generators and discriminators are significantly reduced compared to the conventional Cycle GAN, and we identified that generated images by MS Cycle GAN are well-matched with the characteristics of regions such as leaves, rivers, and land.

Development of Web Service for Liver Cirrhosis Diagnosis Based on Machine Learning (머신러닝기반 간 경화증 진단을 위한 웹 서비스 개발)

  • Noh, Si-Hyeong;Kim, Ji-Eon;Lee, Chungsub;Kim, Tae-Hoon;Kim, KyungWon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.285-290
    • /
    • 2021
  • In the medical field, disease diagnosis and prediction research using artificial intelligence technology is being actively conducted. It is being released as a variety of products for disease diagnosis and prediction, which are most widely used in the application of artificial intelligence technology based on medical images. Artificial intelligence is being applied to diagnose diseases, to classify diseases into benign and malignant, and to separate disease regions for use in identification or reading according to the risk of disease. Recently, in connection with cloud technology, its utility as a service product is increasing. Among the diseases dealt with in this paper, liver disease is a disease with very high risk because it is difficult to diagnose early due to the lack of pain. Artificial intelligence technology was introduced based on medical images as a non-invasive diagnostic method for diagnosing these diseases. We describe the development of a web service to help the most meaningful clinical reading of liver cirrhosis patients. Then, it shows the web service process and shows the operation screen of each process and the final result screen. It is expected that the proposed service will be able to diagnose liver cirrhosis at an early stage and help patients recover through rapid treatment.

The Design of Smart Factory System using AI Edge Device (AI 엣지 디바이스를 이용한 스마트 팩토리 시스템 설계)

  • Han, Seong-Il;Lee, Dae-Sik;Han, Ji-Hwan;Shin, Han Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.257-270
    • /
    • 2022
  • In this paper, we design a smart factory risk improvement system and risk improvement method using AI edge devices. The smart factory risk improvement system collects, analyzes, prevents, and promptly responds to the worker's work performance process in the smart factory using AI edge devices, and can reduce the risk that may occur during work with improving the defect rate when workers perfom jobs. In particular, based on worker image information, worker biometric information, equipment operation information, and quality information of manufactured products, it is possible to set an abnormal risk condition, and it is possible to improve the risk so that the work is efficient and for the accurate performance. In addition, all data collected from cameras and IoT sensors inside the smart factory are processed by the AI edge device instead of all data being sent to the cloud, and only necessary data can be transmitted to the cloud, so the processing speed is fast and it has the advantage that security problems are low. Additionally, the use of AI edge devices has the advantage of reducing of data communication costs and the costs of data transmission bandwidth acquisition due to decrease of the amount of data transmission to the cloud.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms (다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집)

  • Lim, Hyuna;Oh, Seojeong;Son, Hyeongjun;Oh, Yosep
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Recently, digital transformation in manufacturing has been accelerating. It results in that the data collection technologies from the shop-floor is becoming important. These approaches focus primarily on obtaining specific manufacturing data using various sensors and communication technologies. In order to expand the channel of field data collection, this study proposes a method to automatically collect manufacturing data based on vision-based artificial intelligence. This is to analyze real-time image information with the object detection and tracking technologies and to obtain manufacturing data. The research team collects object motion information for each frame by applying YOLO (You Only Look Once) and DeepSORT as object detection and tracking algorithms. Thereafter, the motion information is converted into two pieces of manufacturing data (production performance and time) through post-processing. A dynamically moving factory model is created to obtain training data for deep learning. In addition, operating scenarios are proposed to reproduce the shop-floor situation in the real world. The operating scenario assumes a flow-shop consisting of six facilities. As a result of collecting manufacturing data according to the operating scenarios, the accuracy was 96.3%.

Effects of Cultivation Method on the Growth and Yield of a Cucumber for Development of a Robotic Harvester (오이수확용 로봇개발을 위한 재배방식이 생육 및 수량에 미치는 영향)

  • Lee, Dae-Won;Min, Byung-Ro;Kim, Hyun-Tae;Im, Ki-Taek;Kim, Woong;Kwon, Young-Sam;Nam, Yooun-Il;Choi, Jae-Woong;Sung, Si-Hong
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.226-236
    • /
    • 1998
  • If the lowest leaves of the cucumber were removed or training cultivable method was changed, a computer vision system could divide well the cucumber fruit from the others, and also an end-effector could reach and grip cucumber fruit and cut well its fruit stalk. Therefore, this study investigated whether removal leaves and training cultivable method of a cucumber could affect its growth and yield. They can help to be designed the vision system and the end-effector. A cucumber fruit grew by 6-l5cm long for 2 days regardless of removing leaves. Removal leaves didn't affect growth of cucumber fruit. Number of cucumber fruit was produced within 10% different values by three methods (A, B, C) of removal leaves. The first grade rate (best quality) of 4 B and C was 56.7%, 53.1%, 56.3% respectively. Consequently, proper removal leaves were better than traditional way, which does not remove a leaf, because they make cucumber plant ventilate more freely and absorb more light.

  • PDF