• Title/Summary/Keyword: Image Optimization

Search Result 729, Processing Time 0.022 seconds

Nonlinear Optimization Method for Multiple Image Registration (다수의 영상 특징점 정합을 위한 비선형 최적화 기법)

  • Ahn, Yang-Keun;Hong, Ji-Man
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.634-639
    • /
    • 2012
  • In this paper, we propose nonlinear optimization method for feature matching from multiple view image. Typical solution of feature matching is by solving linear equation. However this solution has large error due to nonlinearity of image formation model. If typical nonlinear optimization method is used, complexity grows exponentially over the number of features. To make complexity lower, we use sparse Levenberg-Marquardt nonlinear optimization for matching of features over multiple view image.

Prewarping Techniques Using Fuzzy system and Particle Swarm Optimization (퍼지 시스템과 Particle Swarm Optimization(PSO)을 이용한 Prewarping 기술)

  • Jang, U-Seok;Gang, Hwan-Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.272-274
    • /
    • 2006
  • In this paper, we concentrate on the mask design problem for optical micro-lithography. The pre-distorted mask is obtained by minimizing the error between the designed output image and the projected output image. We use the particle swarm optimization(PSO) and fuzzy system to insure that the resulting images are identical to the desired image. Our method has good performance for the iteration number by an experiment.

  • PDF

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.

Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm (개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.195-202
    • /
    • 2009
  • In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.

Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image (Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법)

  • Choi Jae-Wan;Kim Yong-Il;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

Finite Step Method for the Constrained Optimization Problem in Phase Contrast Microscopic Image Restoration

  • Adiya, Enkhbolor;Yadam, Bazarsad;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • The aim of microscopic image restoration is to recover the image by applying the inverse process of degradation, and the results facilitate automated and improved analysis of the image. In this work, we consider the problem of image restoration as a minimization problem of convex cost function, which consists of a least-squares fitting term and regularization terms with non-negative constraints. The finite step method is proposed to solve this constrained convex optimization problem. We demonstrate the convergence of this method. Efficiency and restoration capability of the proposed method were tested and illustrated through numerical experiments.

  • PDF

Spatio-Angular Consistent Edit Propagation for 4D Light Field Image (4 차원 Light Field 영상에서의 일관된 각도-공간적 편집 전파)

  • Williem, Williem;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.180-181
    • /
    • 2015
  • In this paper, we present a consistent and efficient edit propagation method that is applied for light field data. Unlike conventional sparse edit propagation, the coherency between light field sub-aperture images is fully considered by utilizing light field consistency in the optimization framework. Instead of directly solving the optimization function on all light field sub-aperture images, the proposed optimization framework performs sparse edit propagation in the extended focus image domain. The extended focus image is the representative image that contains implicit depth information and the well-focused region of all sub-aperture images. The edit results in the extended focus image are then propagated back to each light field sub-aperture image. Experimental results on test images captured by a Lytro off-the-shelf light field camera confirm that the proposed method provides robust and consistent results of edited light field sub-aperture images.

  • PDF

Compression and Enhancement of Medical Images Using Opposition Based Harmony Search Algorithm

  • Haridoss, Rekha;Punniyakodi, Samundiswary
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.288-304
    • /
    • 2019
  • The growth of telemedicine-based wireless communication for images-magnetic resonance imaging (MRI) and computed tomography (CT)-leads to the necessity of learning the concept of image compression. Over the years, the transform based and spatial based compression techniques have attracted many types of researches and achieve better results at the cost of high computational complexity. In order to overcome this, the optimization techniques are considered with the existing image compression techniques. However, it fails to preserve the original content of the diagnostic information and cause artifacts at high compression ratio. In this paper, the concept of histogram based multilevel thresholding (HMT) using entropy is appended with the optimization algorithm to compress the medical images effectively. However, the method becomes time consuming during the measurement of the randomness from the image pixel group and not suitable for medical applications. Hence, an attempt has been made in this paper to develop an HMT based image compression by utilizing the opposition based improved harmony search algorithm (OIHSA) as an optimization technique along with the entropy. Further, the enhancement of the significant information present in the medical images are improved by the proper selection of entropy and the number of thresholds chosen to reconstruct the compressed image.

CAD Model Construction Using Topology Optimization (위상최적설계를 이용한 CAD모델 구축)

  • Lee, Dong-hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.355.1-355
    • /
    • 2002
  • Topology optimization is widely accepted as a conceptual design tool for the product design. Since the resulted layout of the topology optimization is a kind of digital images represented by the density distribution, the seamless process is required to transform digital images to the CAD model for the practical use. In this paper, the general process to construct a CAD model is developed to apply for topology images based on elements. (omitted)

  • PDF

Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization

  • Chen, Yiwei;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.341-344
    • /
    • 2014
  • This study proposes a modified sub-aperture stitching algorithm, which uses an image sharpening algorithm and particle swarm optimization to improve the stitching accuracy. In sub-aperture stitching interferometers with high positional accuracy, the high-frequency components of measurements are more important than the low-frequency components when compensating for position errors using a sub-aperture stitching algorithm. Thus we use image sharpening algorithms to strengthen the high-frequency components of measurements. When using image sharpening algorithms, sub-aperture stitching algorithms based on the least-squares method easily become trapped at locally optimal solutions. However, particle swarm optimization is less likely to become trapped at a locally optimal solution, thus we utilized this method to develop a more robust algorithm. The results of simulations showed that our algorithm compensated for position errors more effectively than the existing algorithm. An experimental comparison with full aperture-testing results demonstrated the validity of the new algorithm.