We proposed a novel method for object recognition using the Smart tag system in the previous research. We identified the object easily, but could not assure the object pose, because the threshold problem was not solved. So we propose a new method to solve this threshold problem. This method uses a smart tag to decide the threshold by recording color information of the image when the object feature is extracted. This method records the original of the object color information at the smart tag first. And then it records the object image information, the circumstance image information and the sensors information continuously when the object feature is extracted through the experiments. Finally, it estimates the current threshold by recorded information. This method can be applied the threshold to each objects. And it can solve the difficult threshold decision problem easily. To approve the possibility of our method, we implemented our approach by using easy and simple techniques as possible.
본 논문에서는 영상 내에서의 객체를 기준점을 사용하여 크기에 따라 분류할 수 있는 시스템을 제안한다. 본 논문에선 객체를 샘플로 하여 연구를 진행하였다. 제안된 시스템은 휴대폰 카메라를 이용하여 획득한 영상에서 객체를 크기 별로 인식해서 그 종류를 파악하고 분류한다. 기존의 객체 인식 시스템들은 객체의 크기만을 이용해서 해당 객체를 분류하였다. 그러한 시스템들은 일정한 거리를 두어 획득한 영상이 아니면 거리에 따라 객체의 크기가 달라져 오류가 발생하는 단점이 있다. 이에 본 논문에서 제안하는 객체 인식 시스템은 이러한 기존의 객체 인식 시스템의 한계를 극복하고자 영상의 왼쪽 상단에 기준점을 두어 그 기준점과 객체의 크기를 비교하여 거리에 상관없이 객체를 분류할 수 있다.
This paper for the method that automatically extracts moving object of the video image is presented. In order to extract moving object, it is that velocity vectors correspond to each frame of the video image. Using the estimated velocity vector, the position of the object are determined. the value of the coordination of the object is initialized to the seed, and in the image plane, the moving object is automatically segmented by the region growing method and tracked by the range of intensity and information about Position. As the result of an application in sequential images, it is available to extract a moving object.
In object tracking, the template matching methods have been developed and frequently used. It is fast enough, but not robust to an object with the variation of size and shape. In order to overcome the limitation of the template matching method, this paper proposes a template update technique. After finding an object position using the correlation-based adaptive predictive search, the proposed method selects blocks which contain object's boundary. It estimates the motion of boundary using block matching, and then updates template. We applied it to IR image sequences including an approaching object. From the experimental results, the proposed method showed successful performance to track object.
In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.
딥러닝의 발전은 컴퓨터 비전 문제를 해결할 수 있지만, 높은 정확도를 위해서는 대규모 데이터셋이 필요하다. 본 논문에서는 객체 바운딩 박스와 이미지 엣지 성분을 이용한 이미지 생성 기법을 제안한다. 객체 탐지를 통해 이미지 내의 객체 바운딩 박스를 추출하고 이미지 엣지 성분을 함께 이미지 생성모델의 입력값으로 사용하여 새로운 이미지 데이터를 생성한다. 실험 결과, 제안 기법으로 생성된 이미지는 이미지 품질 평가에서 소스 이미지와 유사한 품질을 보였고, 딥러닝 훈련과정에서도 좋은 성능을 보였다.
영상을 기반으로 하는 기술들의 지속적인 발전으로 다양한 분야에서 활용되고 있고, 카메라를 통하여 획득한 영상의 객체를 분석하고 판별하는 비전 시스템의 기술 수요가 급속하게 증가하고 있다. 비전 시스템의 핵심 기술인 영상처리는 반도체 생산 분야의 불량 검사, 타이어 표면의 숫자 및 심볼과 같은 객체 인식 검사 등에 사용되고 있고, 자동차 번호판 인식 등의 연구가 계속하여 이루어지고 있는 실정으로, 객체를 신속, 정확하게 인식할 필요가 있다. 본 논문에서는 곡면과 같은 곳에 마킹되어 있는 숫자나 심볼과 같이 기울어진 객체를 인식하기 위하여 입력된 영상 이미지의 객체 기울기에 대한 각도 값을 확인하여 객체의 회전 정렬을 통한 인식 모델을 제안한다. 제안 모델은 컨투어 알고리즘을 기반으로 객체 영역을 추출하고, 객체의 각도를 산출한 후, 회전 정렬된 이미지에 대한 객체 인식을 진행할 수 있는 모델이다. 향후 연구에서는 기계학습을 통한 탬플릿 매칭 연구가 필요하다.
객체 인식이란 하나의 특정 이미지를 입력했을 때, 주어진 이미지를 분석하여 특정한 객체(object)의 위치(location)와 종류(class)를 파악하는 것이다. 최근 객체 인식 기술이 적극적으로 접목되는 분야 중 하나는 자율주행 차량이라 할 수 있고, 본 논문에서는 자율주행 차량에서 영상 기반의 객체 인식 인공지능 기술에 대해 기술한다. 영상 기반 객체 검출 알고리즘은 최근 두 가지 방법(단일 단계 검출 방법 및 두 단계 검출 방법)으로 좁혀지고 있는데, 이를 중심으로 분석 정리하고자 한다. 두 가지 검출 방법의 장단점을 분석 제시하고, 단일 단계 검출 방법에 속하는 YOLO/SSD 알고리즘과 두 단계 검출 방법에 속하는 R-CNN/Faster R-CNN 알고리즘에 대해 분석 기술한다. 이를 통해 자율주행에 필요한 각 객체 인식 응용에 적합한 알고리즘이 선별적으로 선택되어 연구개발 되어질 수 있기를 기대한다.
In this paper, we propose a new algorithm of image depth detection using motion estimation and object tracking. In industry, robots are used for automobile, conveyer system, etc. But, these have much necessary time. Thus, in this paper, we develop the efficient method of image depth detection based on motion estimation and object tracking.
The 3D Image which embodies real object to 3D space of computer enables various geometrical analysis as well as visualization of complex 3D shape by giving sense for the real and cubic effect that can not be offered in 2D image. Human gives real object to same physical properties in 3D space imagination world of computer, and it is expected that this enables offering of various information by user strengthening interface between human-computer to observe object in real condition. In this study, formal style routine of 3D image creation applying digital photogrammetry was designed for more practical, highly trusty 3D image creation, and the system was emboded using object-oriented technique which strengthen user interface. Also, the discontinuity information about rock slope using 3D image is acquired that is orientation, persistence, spacing and aperture etc.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.