• Title/Summary/Keyword: Image Matching

Search Result 2,168, Processing Time 0.035 seconds

Improving Image Fingerprint Matching Accuracy Based on a Power Mask (파워마스크를 이용한 영상 핑거프린트 정합 성능 개선)

  • Seo, Jin Soo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • For a reliable fingerprinting system, improving fingerprint matching accuracy is crucial. In this paper, we try to improve a binary image fingerprint matching performance by utilizing auxiliary information, power mask, which is obtained while constructing fingerprint DB. The power mask is an expected robustness of each fingerprint bit. A caveat of the power mask is the increased storage cost of the fingerprint DB. This paper mitigates the problem by reducing the size of the power mask utilizing spatial correlation of an image. Experiments on a publicly-available image dataset confirmed that the power mask is effective in improving fingerprint matching accuracy.

Automatic Image Matching of Portal and Simulator Images Using courier Descriptors (후리에 표시자를 이용한 포탈영상과 시뮬레이터 영상의 자동결합)

  • 허수진
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.9-16
    • /
    • 1997
  • We develop an automatic imaging matching technique for combining portal image and simulator image for improvements in localization of treatment in radiation therapy. Fusion of images from two imaging modalities is treated as follows. We archive images thxough a frame-yabber. The simulator and portal images are edge detected and enhanced with interpolated adaptive histouam equalization and combined using geometrical parameters relating the coordinates of two image data sets which are calculated using Fourier descriptors. We don't use any kind of imaging markers for patient's convenience. clinical use of this image matching technique for treatment planning will result in improvements in localization of treatment volumes and critical structures. These improvements will allow greater sparing of normal tissues and more precise delivery of energy to the desired irradiation volume.

  • PDF

RFM-based Image Matching for Digital Elevation Model (다항식비례모형-영상정합 기법을 활용한 수치고도모형 제작)

  • 손홍규;박정환;최종현;박효근
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.209-214
    • /
    • 2004
  • This paper presents a RFM-based image matching algorithm which put constraints on the search space through the object-space approach. Also, the detail procedure of generating 3-D surface models from the RFM is introduced as an end-user point of view. The proposed algorithm provides the PML (Piecewise Matching Line) for image matching and reduces the search space to within the confined line-shape area.

  • PDF

Incorporation of Scene Geometry in Least Squares Correlation Matching for DEM Generation from Linear Pushbroom Images

  • Kim, Tae-Jung;Yoon, Tae-Hun;Lee, Heung-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.182-187
    • /
    • 1999
  • Stereo matching is one of the most crucial parts in DEM generation. Naive stereo matching algorithms often create many holes and blunders in a DEM and therefore a carefully designed strategy must be employed to guide stereo matching algorithms to produce “good” 3D information. In this paper, we describe one such a strategy designed by the use of scene geometry, in particular, the epipolarity for generation of a DEM from linear pushbroom images. The epipolarity for perspective images is a well-known property, i.e., in a stereo image pair, a point in the reference image will map to a line in the search image uniquely defined by sensor models of the image pair. This concept has been utilized in stereo matching by applying epipolar resampling prior to matching. However, the epipolar matching for linear pushbroom images is rather complicated. It was found that the epipolarity can only be described by a Hyperbola- shaped curve and that epipolar resampling cannot be applied to linear pushbroom images. Instead, we have developed an algorithm of incorporating such epipolarity directly in least squares correlation matching. Experiments showed that this approach could improve the quality of a DEM.

  • PDF

The design and implementation of Object-based bioimage matching on a Mobile Device (모바일 장치기반의 바이오 객체 이미지 매칭 시스템 설계 및 구현)

  • Park, Chanil;Moon, Seung-jin
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • Object-based image matching algorithms have been widely used in the image processing and computer vision fields. A variety of applications based on image matching algorithms have been recently developed for object recognition, 3D modeling, video tracking, and biomedical informatics. One prominent example of image matching features is the Scale Invariant Feature Transform (SIFT) scheme. However many applications using the SIFT algorithm have implemented based on stand-alone basis, not client-server architecture. In this paper, We initially implemented based on client-server structure by using SIFT algorithms to identify and match objects in biomedical images to provide useful information to the user based on the recently released Mobile platform. The major methodological contribution of this work is leveraging the convenient user interface and ubiquitous Internet connection on Mobile device for interactive delineation, segmentation, representation, matching and retrieval of biomedical images. With these technologies, our paper showcased examples of performing reliable image matching from different views of an object in the applications of semantic image search for biomedical informatics.

Area based image matching with MOC-NA imagery (MOC-NA 영상의 영역기준 영상정합)

  • Youn, Jun-Hee;Park, Choung-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.463-469
    • /
    • 2010
  • Since MOLA(Mars Orbiter Laser Altimeter) data, which provides altimetry data for Mars, does not cover the whole Mars area, image matching with MOC imagery should be implemented for the generation of DEM. However, automatic image matching is difficult because of insufficient features and low contrast. In this paper, we present the area based semi-automatic image matching algorithm with MOC-NA(Mars Orbiter Camera ? Narrow Angle) imagery. To accomplish this, seed points describing conjugate points are manually added for the stereo imagery, and interesting points are automatically produced by using such seed points. Produced interesting points being used as initial conjugate points, area based image matching is implemented. For the points which fail to match, the locations of initial conjugate points are recalculated by using matched six points and image matching process is re-implemented. The quality assessment by reversing the role of target and search image shows 97.5 % of points were laid within one pixel absolute difference.

CNN-based Opti-Acoustic Transformation for Underwater Feature Matching (수중에서의 특징점 매칭을 위한 CNN기반 Opti-Acoustic변환)

  • Jang, Hyesu;Lee, Yeongjun;Kim, Giseop;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this paper, we introduce the methodology that utilizes deep learning-based front-end to enhance underwater feature matching. Both optical camera and sonar are widely applicable sensors in underwater research, however, each sensor has its own weaknesses, such as light condition and turbidity for the optic camera, and noise for sonar. To overcome the problems, we proposed the opti-acoustic transformation method. Since feature detection in sonar image is challenging, we converted the sonar image to an optic style image. Maintaining the main contents in the sonar image, CNN-based style transfer method changed the style of the image that facilitates feature detection. Finally, we verified our result using cosine similarity comparison and feature matching against the original optic image.

A NEW LANDSAT IMAGE CO-REGISTRATION AND OUTLIER REMOVAL TECHNIQUES

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.594-597
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a time-consuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

  • PDF

Hierarchical stereo matching using feature extraction of an image

  • Kim, Tae-June;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.99-102
    • /
    • 2009
  • In this paper a hierarchical stereo matching algorithm based on feature extraction is proposed. The boundary (edge) as feature point in an image is first obtained by segmenting an image into red, green, blue and white regions. With the obtained boundary information, disparities are extracted by matching window on the image boundary, and the initial disparity map is generated when assigned the same disparity to neighbor pixels. The final disparity map is created with the initial disparity. The regions with the same initial disparity are classified into the regions with the same color and we search the disparity again in each region with the same color by changing block size and search range. The experiment results are evaluated on the Middlebury data set and it show that the proposed algorithm performed better than a phase based algorithm in the sense that only about 14% of the disparities for the entire image are inaccurate in the final disparity map. Furthermore, it was verified that the boundary of each region with the same disparity was clearly distinguished.

  • PDF