• Title/Summary/Keyword: Image Labeling Tool

Search Result 8, Processing Time 0.019 seconds

A Vision System for the Inspection of Shaft Worm (비전 시스템을 이용한 샤프트 웜 외관검사기 개발)

  • Bark, Jun-Sung;Kim, Tae-Ken;Kim, Han-Su;Yang, Woo-Suck
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.184-186
    • /
    • 2004
  • This paper is about vision system that exhibits automatic examination of the conditions of shaft's worm. The system is composed of three part : image acquisition, vision algorithm, and user interface. The image acquisition part is composed of motor control, illumination and optics. The vision algorithm examines the parts by labeling algorithm using shaft image. User interface is divided into two parts, user interface for feature registering with control value settings and user interface for examination operation. The automatic inspection system of this research is a tool for final examination of shaft worm. This tool can be practically used in production lines with simple adjustments.

  • PDF

An Auto-Labeling based Smart Image Annotation System (자동-레이블링 기반 영상 학습데이터 제작 시스템)

  • Lee, Ryong;Jang, Rae-young;Park, Min-woo;Lee, Gunwoo;Choi, Myung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.701-715
    • /
    • 2021
  • The drastic advance of recent deep learning technologies is heavily dependent on training datasets which are essential to train models by themselves with less human efforts. In comparison with the work to design deep learning models, preparing datasets is a long haul; at the moment, in the domain of vision intelligent, datasets are still being made by handwork requiring a lot of time and efforts, where workers need to directly make labels on each image usually with GUI-based labeling tools. In this paper, we overview the current status of vision datasets focusing on what datasets are being shared and how they are prepared with various labeling tools. Particularly, in order to relieve the repetitive and tiring labeling work, we present an interactive smart image annotating system with which the annotation work can be transformed from the direct human-only manual labeling to a correction-after-checking by means of a support of automatic labeling. In an experiment, we show that automatic labeling can greatly improve the productivity of datasets especially reducing time and efforts to specify regions of objects found in images. Finally, we discuss critical issues that we faced in the experiment to our annotation system and describe future work to raise the productivity of image datasets creation for accelerating AI technology.

Development of Cloud-Based Medical Image Labeling System and It's Quantitative Analysis of Sarcopenia (클라우드기반 의료영상 라벨링 시스템 개발 및 근감소증 정량 분석)

  • Lee, Chung-Sub;Lim, Dong-Wook;Kim, Ji-Eon;Noh, Si-Hyeong;Yu, Yeong-Ju;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.233-240
    • /
    • 2022
  • Most of the recent AI researches has focused on developing AI models. However, recently, artificial intelligence research has gradually changed from model-centric to data-centric, and the importance of learning data is getting a lot of attention based on this trend. However, it takes a lot of time and effort because the preparation of learning data takes up a significant part of the entire process, and the generation of labeling data also differs depending on the purpose of development. Therefore, it is need to develop a tool with various labeling functions to solve the existing unmetneeds. In this paper, we describe a labeling system for creating precise and fast labeling data of medical images. To implement this, a semi-automatic method using Back Projection, Grabcut techniques and an automatic method predicted through a machine learning model were implemented. We not only showed the advantage of running time for the generation of labeling data of the proposed system, but also showed superiority through comparative evaluation of accuracy. In addition, by analyzing the image data set of about 1,000 patients, meaningful diagnostic indexes were presented for men and women in the diagnosis of sarcopenia.

Research on the development of automated tools to de-identify personal information of data for AI learning - Based on video data - (인공지능 학습용 데이터의 개인정보 비식별화 자동화 도구 개발 연구 - 영상데이터기반 -)

  • Hyunju Lee;Seungyeob Lee;Byunghoon Jeon
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.56-67
    • /
    • 2023
  • Recently, de-identification of personal information, which has been a long-cherished desire of the data-based industry, was revised and specified in August 2020. It became the foundation for activating data called crude oil[2] in the fourth industrial era in the industrial field. However, some people are concerned about the infringement of the basic rights of the data subject[3]. Accordingly, a development study was conducted on the Batch De-Identification Tool, a personal information de-identification automation tool. In this study, first, we developed an image labeling tool to label human faces (eyes, nose, mouth) and car license plates of various resolutions to build data for training. Second, an object recognition model was trained to run the object recognition module to perform de-identification of personal information. The automated personal information de-identification tool developed as a result of this research shows the possibility of proactively eliminating privacy violations through online services. These results suggest possibilities for data-based industries to maximize the value of data while balancing privacy and utilization.

  • PDF

Electron Tomography and Synapse Study

  • Kim, Hyun-Wook;Kim, Dasom;Rhyu, Im Joo
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.83-87
    • /
    • 2014
  • Electron tomography (ET) is a useful tool to investigate three-dimensional details based on virtual slices of relative thick specimen, and it requires complicated procedures consisted of image acquisition steps and image processing steps with computer program. Although the complicated step, this technique allows us to overcome some limitations of conventional transmission electron microscopy: (1) overlapping of information in the ultrathin section covering from 30 nm to 90 nm when we observe very small structures, (2) fragmentation of the information when we study larger structures over 100 nm. There are remarkable biological findings with ET, especially in the field of neuroscience, although it is not popular yet. Understanding of behavior of synaptic vesicle, active zone, pooling and fusion in the presynaptic terminal have been enhanced thanks to ET. Some sophisticated models of postsynaptic density with ET and immune labeling are introduced recently. In this review, we introduce principles, practical steps of ET and some recent researches in synapse biology.

Development of Python-based Annotation Tool Program for Constructing Object Recognition Deep-Learning Model (물체인식 딥러닝 모델 구성을 위한 파이썬 기반의 Annotation 툴 개발)

  • Lim, Song-Won;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • We developed an integrative annotation program that can perform data labeling process for deep learning models in object recognition. The program utilizes the basic GUI library of Python and configures crawler functions that allow data collection in real time. Retinanet was used to implement an automatic annotation function. In addition, different data labeling formats for Pascal-VOC, YOLO and Retinanet were generated. Through the experiment of the proposed method, a domestic vehicle image dataset was built, and it is applied to Retinanet and YOLO as the training and test set. The proposed system classified the vehicle model with the accuracy of about 94%.

Automatic Recognition of Symbol Objects in P&IDs using Artificial Intelligence (인공지능 기반 플랜트 도면 내 심볼 객체 자동화 검출)

  • Shin, Ho-Jin;Jeon, Eun-Mi;Kwon, Do-kyung;Kwon, Jun-Seok;Lee, Chul-Jin
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.37-41
    • /
    • 2021
  • P&ID((Piping and Instrument Diagram) is a key drawing in the engineering industry because it contains information about the units and instrumentation of the plant. Until now, simple repetitive tasks like listing symbols in P&ID drawings have been done manually, consuming lots of time and manpower. Currently, a deep learning model based on CNN(Convolutional Neural Network) is studied for drawing object detection, but the detection time is about 30 minutes and the accuracy is about 90%, indicating performance that is not sufficient to be implemented in the real word. In this study, the detection of symbols in a drawing is performed using 1-stage object detection algorithms that process both region proposal and detection. Specifically, build the training data using the image labeling tool, and show the results of recognizing the symbol in the drawing which are trained in the deep learning model.

Developing a Korean Standard Brain Atlas on the basis of Statistical and Probabilistic Approach and Visualization tool for Functional image analysis (확률 및 통계적 개념에 근거한 한국인 표준 뇌 지도 작성 및 기능 영상 분석을 위한 가시화 방법에 관한 연구)

  • Koo, B.B.;Lee, J.M.;Kim, J.S.;Lee, J.S.;Kim, I.Y.;Kim, J.J.;Lee, D.S.;Kwon, J.S.;Kim, S.I.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.3
    • /
    • pp.162-170
    • /
    • 2003
  • The probabilistic anatomical maps are used to localize the functional neuro-images and morphological variability. The quantitative indicator is very important to inquire the anatomical position of an activated legion because functional image data has the low-resolution nature and no inherent anatomical information. Although previously developed MNI probabilistic anatomical map was enough to localize the data, it was not suitable for the Korean brains because of the morphological difference between Occidental and Oriental. In this study, we develop a probabilistic anatomical map for Korean normal brain. Normal 75 blains of T1-weighted spoiled gradient echo magnetic resonance images were acquired on a 1.5-T GESIGNA scanner. Then, a standard brain is selected in the group through a clinician searches a brain of the average property in the Talairach coordinate system. With the standard brain, an anatomist delineates 89 regions of interest (ROI) parcellating cortical and subcortical areas. The parcellated ROIs of the standard are warped and overlapped into each brain by maximizing intensity similarity. And every brain is automatically labeledwith the registered ROIs. Each of the same-labeled region is linearly normalize to the standard brain, and the occurrence of each legion is counted. Finally, 89 probabilistic ROI volumes are generated. This paper presents a probabilistic anatomical map for localizing the functional and structural analysis of Korean normal brain. In the future, we'll develop the group specific probabilistic anatomical maps of OCD and schizophrenia disease.