Browse > Article
http://dx.doi.org/10.9729/AM.2014.44.3.83

Electron Tomography and Synapse Study  

Kim, Hyun-Wook (Department of Anatomy, Korea University College of Medicine)
Kim, Dasom (Department of Anatomy, Korea University College of Medicine)
Rhyu, Im Joo (Department of Anatomy, Korea University College of Medicine)
Publication Information
Applied Microscopy / v.44, no.3, 2014 , pp. 83-87 More about this Journal
Abstract
Electron tomography (ET) is a useful tool to investigate three-dimensional details based on virtual slices of relative thick specimen, and it requires complicated procedures consisted of image acquisition steps and image processing steps with computer program. Although the complicated step, this technique allows us to overcome some limitations of conventional transmission electron microscopy: (1) overlapping of information in the ultrathin section covering from 30 nm to 90 nm when we observe very small structures, (2) fragmentation of the information when we study larger structures over 100 nm. There are remarkable biological findings with ET, especially in the field of neuroscience, although it is not popular yet. Understanding of behavior of synaptic vesicle, active zone, pooling and fusion in the presynaptic terminal have been enhanced thanks to ET. Some sophisticated models of postsynaptic density with ET and immune labeling are introduced recently. In this review, we introduce principles, practical steps of ET and some recent researches in synapse biology.
Keywords
Synapse; Neuroscience; Synaptic vesicle; Pooling; Postsynaptic density;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lucic V, Yang T, Schweikert G, Forster F, and Baumeister W (2005) Morphological characterization of molecular complexes present in the synaptic cleft. Structure 13, 423-434.   DOI
2 McIntosh R, McIntosh R, Nicastro D, and Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15, 43-51.   DOI
3 Mun J Y, Lee K E, and Han S S (2008) Techniques for cryo-electron tomography in biological field. Korean J. Microsc. 38, 73-79.   과학기술학회마을
4 Palade G and Palay S L (1954) Electron microscope observations of interneuronal and neuromuscular synapses. Anat. Rec. 118, 335-336.
5 Lucic V, Kossel A H, Yang T, Bonhoeffer T, Baumeister W, and Sartori A (2007) Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J. Struct. Biol. 160, 146-156.   DOI
6 Rhyu I J and Park S N (2008) A glance of electron tomography through 4th international congress on electron tomogrpaphy. Korean J. Microsc. 38, 275-278.
7 Scout M C, Chen C C, Mecklenburg M, Zhu C, Xu R, Ercius P, Dahmen U, Regan B C, and Miao J (2012) Electron tomography at 2.4-angstrom resolution. Nature 483, 444-447.   DOI
8 Burette A C, Lesperance T, Crum J, Martone M, Volkmann N, Ellisman M H, and Weinberg R J (2012) Electron tomographic analysis of synaptic ultrastructure. J. Comp. Neurol. 520, 2697-2711.   DOI
9 Siksou L, Rostaing P, Lechaire J P, Boudier T, Ohtsuka T, Fejtov A, Kao H T, Greengard P, Gundelfinger E, Triller A, and Marty S (2007) Threedimensional architecture of presynaptic terminal cytomatrix. J. Neurosci. 27, 6868-6877.   DOI
10 Siksou L, Varoqueaux F, Pascual O, Triller A, Brose N, and Marty S (2009) A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur. J. Neurosci. 30, 49-56.   DOI
11 Frey T G, Perkins G A, and Ellisman M H (2006) Electron tomography of membrane-bound cellular organelles. Annu. Rev. Biophys. Biomol. Struct. 35, 199-224.   DOI
12 Fernandez-Busnadiego R, Asano S, Oprisoreanu A M, Sakata E, Doengi M, Kochovski Z, Zurner M, Stein V, Schoch S, Baumeister W, and Lucic V (2013) Cryo-electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering. J. Cell Biol. 201, 725-740.   DOI
13 Fernandez-Busnadiego R, Schrod N, Kochovski Z, Asano S, Vanhecke D, Baumeister W, and Lucic V (2011) Insights into the molecular organization of the neuron by cryo-electron tomography. J. Electron Microsc. (Tokyo) 60 Suppl 1, S137-S148.   DOI
14 Fernandez-Busnadiego R, Zuber B, Maurer U, Cyrklaff M, Baumeister W, and Lucic V (2010) Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 188, 145-156.   DOI
15 Jou H T, Lee S, and Kim H J (2013) Improvement of alignment accuracy in electron tomography. Appl. Microsc. 43, 1-8.   DOI
16 Kim H W, Oh S H, Kim N, Nakazawa E, and Rhyu I J (2013) Rapid method for electron tomographic reconstruction and three-dimensional modeling of the murine synapse using an automated fiducial markerfree system. Microsc. Microanal. 19 Suppl 5, 182-187.
17 Kim J W, Lee S J, and Rhyu I J (2007) Construction of anaglyphic stereo pair image using Adobe Photoshop program. Korean J. Microsc. 37, 143-146.   과학기술학회마을
18 Landis D, Hall A, Weinstein L, and Reese T (1988) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201-209.   DOI
19 Lee K J, Kim H, Kim T S, Park S H, and Rhyu I J (2004) Morphological analysis of spine shapes of Purkinje cell dendrites in the rat cerebellum using high-voltage electron microscopy. Neurosci. Lett. 359, 21-24.   DOI
20 Chen X, Winters C, and Reese R (2008) Life inside a thin section: tomography. J. Neurosci. 28, 9321-9327.   DOI