• 제목/요약/키워드: Image Feature Vector

검색결과 500건 처리시간 0.025초

Gabor 필터의 위상 정보를 이용한 거리 영상의 분할 및 분류 (Segmentation and Classification of Range Data Using Phase Information of Gabor Fiter)

  • 현기호;이광호;황병곤;조석제;하영호
    • 대한전자공학회논문지
    • /
    • 제27권8호
    • /
    • pp.1275-1283
    • /
    • 1990
  • Perception of surfaces from range images plays a key role in 3-D object recognition. Recognition of 3-D objects from range images is performed by matching the perceived surface descriptions with stored object models. The first step of the 3-d object recognition from range images is image segmentation. In this paper, an approach for segmenting 3-D range images into symbolic surface descriptions using spatial Gabor filter is proposed. Since the phase of data has a lot of important information, the phase information with magnitude information can effectively segment the range imagery into regions satisfying a common homogeneity criterion. The phase and magnitude of Gabor filter can represent a unique featur vector at a point of range data. As a result, range images are trnasformed into feature vectors in 3-parameter representation. The methods not only to extract meaningful features but also to classify a patch information from range images is presented.

  • PDF

생물학적 특징을 이용한 사용자 인증시스템 구현 (A study on the implementation of user identification system using bioinfomatics)

  • 문용선;정택준
    • 한국정보통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.346-355
    • /
    • 2002
  • 이 연구는 인식의 정확성을 향상시키기 위하여 단일생체 인식 대신에 얼굴, 입술, 음성을 이용하는 다중생체 인식방법을 제안한다. 각 생체 특징은 다음과 같은 방법으로 찾는다. 얼굴 특징은 웨이블렛 다중분해와 주성분 분석방법으로 계산하였고, 입술의 경우는 입술의 경계를 구한후 최소 자승법을 이용한 방정식의 계수를 구하였으며, 음성은 멜 주파수에 의한 MFCC를 사용하였으며, 역전파 학습 알고리즘으로 분류하여 실험하였다. 실험을 통해 본 방법의 유효성을 확인하였다.

적응적 피부색 검출을 이용한 포르노그래피 영상 분류 방법 (Classification of Pornography Images Using Adaptive Skin Detection)

  • 윤종원;박찬우;문영식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.971-972
    • /
    • 2008
  • In this paper, we present a novel method for classifying pornography images using adaptive skin detection. From an input image, we detect initial skin regions and construct an adaptive skin probability density model using color information for the detected skin regions. From the skin probability density model, we extract feature vectors and train the images using Support Vector Machine to classify pornography images.

  • PDF

세그먼트 기반의 Shape-Size Index 추출을 통한 고해상도 영상의 분류정확도 개선 (Segment-based Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery)

  • 한유경;김혜진;최재완;김용일
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.207-212
    • /
    • 2009
  • 고해상도 위성영상이 갖는 공간 객체의 복잡성과 다양성에 의해 기존 중 저해상도 영상에서 사용하던 분류 방식을 고해상도 영상에 그대로 적용하기에는 한계가 있다. 이러한 문제를 극복하기 위하여 영상은 공간적인 특성을 추가적으로 추출하여 분광정보와 결합하여 분류를 수행하는 방식의 연구가 진행되고 있다. 본 연구의 목적은 고해상도 영상의 분류정확도를 개선하기 위하여 새로운 공간 개체(spatial feature)인 SSI(Shape-Size Index)를 제안하는데 있다. SSI는 영역 확장(Region Growing) 기반의 영상 분할(Image Segmentation)을 수행한 후, 객체 내에 객체의 크기와 모양에 대한 고려를 모두 할 수 있는 공간 속성값을 할당하여 공간정보를 추출한다. 추출된 공간정보를 고해강도 영상의 다중분광 밴드와 결합하여 Support Vector Machine(SVM)을 이용한 분류를 수행하였다. 실험 결과, 제안한 기법의 분류 결과가 분광밴드만을 이용하여 분류를 수행한 결과뿐만 아니라 기존의 공간 개체 추출방식인 GLCM, PSI 기법을 이용한 분류 결과에 비해 높은 분류정확도를 도출함을 알 수 있었다.

  • PDF

웨이블릿 변환을 이용한 장문인식시스템 (Palmprint recognition system using wavelet transform)

  • 최승달;남부희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.114-116
    • /
    • 2006
  • This paper is to propose the palm print recognition system using wavelet transform. The palm print is frequently used as the material for the biometric recognition system such as the finger print, iris, face, etc. Since the palm print has lots of properties which include principle line, wrinkles, ridge and so forth, the ways of the implementation of the system are various. In this paper, at first, the palm print image is acquired and then some level of wavelet transform is performed. The coefficients become to be some blocks size of M by N after divided into the horizontal, vertical, diagonal components each level. The mean values, which are calculated with values of each block, are used as the feature vector. To compare between the stored template and the acquired vectors, we adopt the PNN (Probability Neural Network) method.

  • PDF

Steganography based Multi-modal Biometrics System

  • Go, Hyoun-Joo;Moon, Dae-Sung;Moon, Ki-Young;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.71-76
    • /
    • 2007
  • This paper deals with implementing a steganography based multi-modal biometric system. For this purpose, we construct a multi-biometrics system based on the face and iris recognition. Here, the feature vector of iris pattern is hidden in the face image. The recognition system is designed by the fuzzy-based Linear Discriminant Analysis(LDA), which is an expanded approach of the LDA method combined by the theory of fuzzy sets. Furthermore, we present a watermarking method that can embed iris information into face images. Finally, we show the advantages of the proposed watermarking scheme by computing the ROC curves and make some comparisons recognition rates of watermarked face images with those of original ones. From various experiments, we found that our proposed scheme could be used for establishing efficient and secure multi-modal biometric systems.

고차국소 자기상관함수를 이용한 에지 특징벡터의 생성과 유사이미지에의 적용 (Edge Feature Vector Extraction using Higher-Order Local Autocorrelation and Its Application in Image Retrieval)

  • 윤미진;오군석;김판구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.562-564
    • /
    • 2002
  • 본 논문에서는 자기상관함수의 국소적 특징을 사용하여 에지 특징을 추출한 후, 이를 이용해 유사이미지를 검색하는 방법을 제시한다. 자기상관함수의 국소적 특징을 이용하여 이미지를 검색할 경우 크기, 밝기, 색상등과 같은 이미지 요소가 서로 다를 경우에도 영향을 받지 않고 에지 특징정보를 추출해 낼 수 있다. 이는 얻어진 에지 특징을 이미지 크기와 고차 국소 자기상관함수의 변위에 의해 변하지 않도록 정규화를 하고, 동일 이미지에 대해 밝기가 조금 달라지면 검색효율이 떨어지는 점을 해결하기 위해 거리척도로서 방향여현거리(direction cosine distance)를 이용함으로써 가능하다. 이렇게 추출된 특징벡터를 자기조직화 맵에 의하여 클러스터링하고, 유사이미지 검색의 효율성을 비교해본 결과, 본 논문에서 제시한 방법을 사용하여 검색한 경우 재현율이 기존의 방법에 비해서 비교적 높은 수치를 나타냈다.

  • PDF

오디오 신호에 기반한 음란 동영상 판별 (Classification of Phornographic Videos Based on the Audio Information)

  • 김봉완;최대림;이용주
    • 대한음성학회지:말소리
    • /
    • 제63호
    • /
    • pp.139-151
    • /
    • 2007
  • As the Internet becomes prevalent in our lives, harmful contents, such as phornographic videos, have been increasing on the Internet, which has become a very serious problem. To prevent such an event, there are many filtering systems mainly based on the keyword-or image-based methods. The main purpose of this paper is to devise a system that classifies pornographic videos based on the audio information. We use the mel-cepstrum modulation energy (MCME) which is a modulation energy calculated on the time trajectory of the mel-frequency cepstral coefficients (MFCC) as well as the MFCC as the feature vector. For the classifier, we use the well-known Gaussian mixture model (GMM). The experimental results showed that the proposed system effectively classified 98.3% of pornographic data and 99.8% of non-pornographic data. We expect the proposed method can be applied to the more accurate classification system which uses both video and audio information.

  • PDF

SOFM과 다층신경회로망을 이용한 패턴 분류 방식 (Pattern Classification Method using SOFM and Multilayer Neural Network)

  • 박진성;공휘식;이현관;김주웅;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.296-300
    • /
    • 2002
  • 본 연구에서 는 비지도 학습 방식인 SOFM(Self Organize Feature Maps)과 지도 학습인 다층 신경회로망을 이용하여 패턴 분류를 하는 방식을 제안하였다. SOFM을 이용하여 입력 패턴을 분류하여 얻은 결과를 다층 신경회로망의 초기 연결강도와 목표 값으로 설정한다. 제안한 방식의 유용성을 확인하기 위하여 얼굴 영상에 대하여 시뮬레이션한 결과 우수한 성능을 얻었다.

  • PDF

SVM을 이용한 스테레오 비전 기반의 사람 탐지 (Stereo Vision based Human Detection using SVM)

  • 정상준;송재복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.117-118
    • /
    • 2007
  • A robot needs a human detection algorithm for interaction with a human. This paper proposes a method that finds people using a SVM (support vector machine) classifier and a stereo camera. Feature vectors of SVM are extracted by HoG (histogram of gradient) within images. After training extracted vectors from the clustered images, the SVM algorithm creates a classifier for human detection. Each candidate for a human in the image is generated by clustering of depth information from a stereo camera and the candidate is evaluated by the classifier. When compared with the existing method of creating candidates for a human, clustering reduces computational time. The experimental results demonstrate that the proposed approach can be executed in real time.

  • PDF