열차의 방향을 기존 방향에서 다른 방향으로 이동시키기 위한 변환 장치인 선로 전환기의 고장은 열차의 탈선 등을 유발시킬 수 있다. 따라서 열차운행의 안전 측면에서 해당 장비에 대한 모니터링은 필수 요소이다. 본 논문에서는 선로 전환기의 구동시 발생하는 소리 정보를 기반으로 잡음에도 강인한 선로 전환기의 이상 상황 탐지시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호에 STFT(Short-Time Fourier Transform)를 적용하여 스펙트로그램을 취득한다. 실제 환경에서 발생하는 잡음의 영향에도 강인한 성능을 보장하기 위하여, 해당 스펙트로그램에 대한 전처리 과정을 수행 후 모듈화 한다. 각각의 모듈에서 평균값과 표준편차를 계산 및 조합하여 특징 벡터로 생성한 후 이진 분류에 뛰어난 성능이 확인된 SVM(Support Vector Machine)에 적용하여 이상 상황을 탐지한다. 실제 선로 전환기의 전환 시 발생하는 소리 데이터를 이용하여 모의실험을 수행한 결과, 제안한 시스템은 잡음이 발생하는 상황에서도 효과적으로 이상 상황을 탐지함을 확인하였다.
대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.411-420
/
1999
In geology, lineament features have been used to identify geological events, and many of scientists have been developed the algorithm that can be applied with the computer to recognize the lineaments. We choose several edge detection filter, line detection filters and Hough transform to detect an edge, line, and to vectorize the extracted lineament features, respectively. firstly the edge detection filter using a first-order derivative is applied to the original image In this step, rough lineament image is created Secondly, line detection filter is used to refine the previous image for further processing, where the wrong detected lines are, to some extents, excluded by using the variance of the pixel values that is composed of each line Thirdly, the thinning process is carried out to control the thickness of the line. At last, we use the Hough transform to convert the raster image to the vector one. A Landsat image is selected to extract lineament features. The result shows the lineament well regardless of directions. However, the degree of extraction of linear feature depends on the values of parameters and patterns of filters, therefore the development of new filter and the reduction of the number of parameter are required for the further study.
The purpose of this study is to develop a practical image inspection system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from $30^{\circ}\;to\;45^{\circ}$ simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment the image inspection system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automation when the image inspection system developed from this research is applied to the productive field.
본 논문은 구조 광 영상을 이용하여 3차원 얼굴을 복원하는 방법을 제안한다. 프로젝터와 카메라의 시선벡터가 평행하다고 가정한다. 먼저 격자 형태의 구조 광을 배경에 투영하고 참조 구조 광 영상을 획득한다. 참조 구조 광 영상을 사용하여 카메라와 프로젝터를 보정한다. 이후 사람의 얼굴에 동일한 형태의 구조 광을 투영하고 얼굴 구조 광 영상을 획득한다. 획득한 두 종류의 구조 광 영상에서 추출된 특징 점들의 위치 변화를 측정하고 측정된 변화량으로 3차원 얼굴을 복원 한다. 실험 결과를 보면, 이런 간단한 장치를 통해 사람이 인식할 수 있을 정도의 3차원 얼굴 영상을 얻을 수 있음을 알 수 있다.
본 논문은 입력된 영상으로부터 적응적 피부색 검출 방법으로 생성된 피부색 영역과 에지 정보의 결합을 특정 벡터로 이용하여 입력 영상의 유해(누드, 성인물) 여부를 판별하는 방법을 제안한다. 제안하는 방법은 네 단계의 과정으로 이루어져 있다. 첫 번째 단계에서는 입력 영상으로부터 기존의 피부색 검출 방법들을 적용하여 얻은 모든 결과 영상들에 대해서 논리곱 연산을 통해 초기 피부색 영역을 검출한다. 두 번째 단계에서 초기 피부색 영역의 화소 정보를 기반으로 피부색 확률 분포 모델을 생성하고 이를 통해 피부색 확률 영상을 생성한다. 그리고 피부색 확률 영상에 임계값을 적용하여 이진화 한다. 세 번째 단계에서 이진 피부색 영역과 에지의 결합 영상을 생성하고 피부색 영역을 확산하여 최종 피부색 영역을 검출한다. 마지막 단계에서 최종 피부색 영상과 최종 피부색 영역 안에 있거나 인접한 에지들의 결합 영상을 특정 벡터로 생성한다. 생성된 특정 벡터를 support vector machine(SVM) 학습을 통해 생성된 분류 모텔로 입력 영상의 유해 여부를 판별하여 유해 혹은 무해 영상으로 분류한다. 실험 결과를 통하여 제안하는 방법이 기존의 유해 영상 분류 방법에 비해 분류 성능이 9.6% 향상된 것을 확인하였다.
본 논문에서는 불변 점 특징에 기반한 카메라 동작인수 측정방법을 제안한다. 일반적으로 영상의 특징정보는 카메라 뷰포인트에 따라 변하는 단점이 있어 시간이 지나면 정보량이 증가하게 된다. 또한 카메라 외부인수 산출을 위한 비선형 최소제곱 측정을 이용한 LM 방법은 초기값에 따라 최소점에 근접하는 반복회수가 다르고 지역 최소점에 빠질 경우 수렴시간이 증가하는 단점이 있다. 본 논문에서는 이러한 문제를 개선하기 위해 첫째, 기하학의 불변 벡터를 사용하여 특징 모델을 구성하는 것을 제안하였다. 둘째, 2D 호모그래피와 LM 방법을 이용하여 정확도와 수렴도를 향상시키는 2단계 측정 방법을 제안하였다. 실험에서는 제안한 알고리즘의 우수성을 입증하기 위해 기존방법과 제안한 방법을 비교 분석하였다.
금융권의 주 5일제 근무에 따른 무인 현금 인출기의 사용 확대와 함께, 타인의 신용카드를 이용하여 무인 현금 인출기에서 돈을 인출하는 금융 범죄에 대한 원천적인 예방 대책이 필수적으로 요구되고 있다. 특히 무인 현금 인출기 부근에는 감시용 CCTV Camera가 설치되어 있으나, 지능적인 범죄자들은 이러한 사실을 인식하고 선글라스, 마스크 등을 착용하여 이러한 감시 시스템을 피해가고 있다 본 논문에서는 이러한 문제점을 해결하기 위하여 무인 현금 인출기에 설치되어 있는 카메라를 통해 입력된 사용자의 얼굴 및 얼굴 특징점을 영상 신호처리 방법과 SVM(Support Vector Machine)으로 분석하여 향후 얼굴이 식별 가능한 경우에만 금융 거래를 할 수 있도록 하는 시스템을 개발하였다. 실험결과, 학습 데이터에 대해서는 약 1%의 오 인식율과 2%의 오 거부율을 나타냈으며, Test 데이터에 대해서는 약 2.5%의 오 인식율과 1.43%의 오 거부율을 나타냈다.
내비게이션 단말기에 사용되는 전자지도 제작이 수작업으로 이루어지고 있어 오기가 발생할 수 있기 때문에, 본 논문에서는 내비게이션 정보의 요소로 다루어지는 교통 표지판에 대한 오프라인 자동 인식에 대해 제안하였다. 컴퓨터 비전과 패턴 인식 응용 분야로 2차원 얼굴 인식 분야에 널리 활용되고 있는 주성분분석기법(PCA)과 선형판별분석기법(LDA)을 이용하여 교통표지판을 인식하고자 한다. 먼저 PCA를 이용하여 높은 차원의 2차원 이미지 데이터를 저차원의 특징 벡터영역으로 투영을 시킨다. PCA로부터 구해진 저차원의 특징 벡터를 이용하여 LDA로 분산 매트릭스들 간에 최대가 되고 하고, 분산 매트릭스 내에서는 최소가 되도록 하였다. 실제 도로 환경에서 추출된 교통 신호판의 대부분을 제안된 알고리즘에 의해서 특징 벡터를 40개 이상 사용하였을 경우 92.3%이상의 높은 인식률을 보임을 확인하였다.
전립선은 남자에게만 있는 장기이다. 전립선의 질병을 진단하기 위하여 일반적으로 TRUS 영상이 사용되는데, 희미한 전립선 경계나 잡음, 좁은 그레이 레벨 분포 때문에, 전립선의 경계를 검출하는 것은 상당히 어려운 작업 중의 하나이다. 본 논문에서는 SVM을 사용하여 TRUS 영상에서 자동적으로 전립선 분할을 하는 방법을 제안한다. 이 방법은 전처리, 가버 특징 추출, 훈련, 전립선 분할 과정으로 진행된다. 전처리 과정에서 잡음 제거는 스틱 필터와 top-hat 변환이 적용된다. 회전 불변 텍스처 추출을 위하여 가버 필터 뱅크가 사용된다. 훈련과정에서 SVM은 전립선과 비전립선의 각 특징을 얻기 위해 사용되며, 마지막으로 전립선 경계가 추출된다. 여러 실험 결과로 제안 방법은 충분히 유효하고, 의사의 수동 추출 방법과 비교했을 때 10%미만의 경계 차이를 보였다.
본 논문에서는 번호판 고유의 복합 색상 정보와 수직 에지 정보를 이용한 번호판 후보 영역 추출기법을 제안한다. 또한 추출된 번호판 영역의 정확성을 높이기 위해서, Fast DCT를 거쳐 압축된 이미지에 대하여 Support Vector Machines(SVM)을 이용한 검증 과정을 제안한다. 제안하는 기법은 차량번호판 인식의 대상이 되는 자동차의 위치가 정면, 후면을 구분하지 않는 다양함을 가지고, 주변 배경이 충분히 포함되는 상황에서 다양한 크기를 가지는 355장의 영상들을 대상으로 한다. 실험 결과, SVM을 이용한 검증 과정을 거친 방법이 그렇지 않은 경우보다 20%이상 향상된 번호판 추출 성공률을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.