• 제목/요약/키워드: Image Extraction and Segmentation

검색결과 370건 처리시간 0.029초

상향식 영상분할 구조에서의 초기 영상분할을 위한 효율적인 마커 추출 알고리즘 (EFFICIENT MARKER EXTRACTION ALGORITHM FOR INITIAL SEGMENTATION IN A BOTTOM-UP IMAGE SEGMENTATION SCHEME)

  • 박현상;나종범
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.895-898
    • /
    • 1998
  • In this paper, we propose an efficient marker extraction algorithm for initial image segmentation in a bottom-up segmentation scheme. The proposed algorithm generates dense markers in visually complex areas and coarse markers in visually uniform areas. which conforms to the human perceptual system. Experimental results show that the proposed method achieves better subjective quality for fine initial image segmentation.

  • PDF

블록 동질성 분할을 이용한 화재불꽃 영역 추출에 관한 연구 (A Study on the Fire Flame Region Extraction Using Block Homogeneity Segmentation)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.169-176
    • /
    • 2018
  • In this study, we propose a new Fire Flame Region Extraction using Block Homogeneity Segmentation method of the Fire Image with irregular texture and various colors. It is generally assumed that fire flame extraction plays a very important role. The Color Image with fire flame is divided into blocks and edge strength for each block is computed by using modified color histogram intersection method that has been developed to differentiate object boundaries from irregular texture boundaries effectively. The block homogeneity is designed to have the higher value in the center of region with the homeogenous colors or texture while to have lower value near region boundaries. The image represented by the block homogeneity is gray scale image and watershed transformation technique is used to generate closed boundary for each region. As the watershed transform generally results in over-segmentation, region merging based on common boundary strength is followed. The proposed method can be applied quickly and effectively to the initial response of fire.

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

객체 분할과 HAQ 알고리즘을 이용한 내용 기반 영상 검색 특징 추출 (Feature Extraction Of Content-based image retrieval Using object Segmentation and HAQ algorithm)

  • 김대일;홍종선;장혜경;김영호;강대성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.453-456
    • /
    • 2003
  • Compared with other features of the image, color features are less sensitive to noise and background complication. Besides, this adding to object segmentation has more accuracy of image retrieval. This paper presents object segmentation and HAQ(Histogram Analysis and Quantization) algorithm approach to extract features(the object information and the characteristic colors) of an image. The empirical results shows that this method presents exactly spatial and color information of an image as image retrieval's feature.

  • PDF

영상분할과 특징점 추출을 이용한 영역기반 영상검색 시스템 (A Region-based Image Retrieval System using Salient Point Extraction and Image Segmentation)

  • 이희경;호요성
    • 방송공학회논문지
    • /
    • 제7권3호
    • /
    • pp.262-270
    • /
    • 2002
  • 대부분의 영상색인 기법에서는 영상의 전역 특징값을 이용한다. 그러나 이러한 방법은 영상의 지역적인 변화들을 담아내지 못하기 때문에 만족할 만한 격과를 제공하지 못한다. 본 논문에서는 이러한 문제점을 해결하기 위한 방법으로 영상의 특징점(salient point)과 영상분할을 이용하여 중요영역(important region)을 추출하는 새로운 영역기반 영상검색 시스템을 제안한다. 본 논문에서 제안하는 특징점 추출 기법은 기존의 방법과 비교하여 빠르고 정확한 추출 결과를 보여준다. 선택된 영역에서 추출된 칼라와 질감 정보를 이용하여 검색한 결과는 칼라나 질감 정보의 전력 특징값을 이용한 검색 방법의 결과보다 크게 향상됨을 알 수 있었다.

무감독 SVM 분류 기법을 통한 드론 영상 경계 박스 내 차량 자동 추출 연구 (A Study on Automatic Vehicle Extraction within Drone Image Bounding Box Using Unsupervised SVM Classification Technique)

  • 염준호
    • 토지주택연구
    • /
    • 제14권4호
    • /
    • pp.95-102
    • /
    • 2023
  • 도시 지역에서 객체를 탐지하기 위해 드론 고해상도 영상에 기계 학습 알고리즘을 적용하는 다양한 연구가 진행되었다. 그러나 대부분의 차량 추출 연구는 인스턴스 세그멘테이션 대신 경계 박스로 차량을 탐지하여 차량의 방향이나 정확한 경계를 알 수 없다는 한계점이 있다. 인스턴스 세그멘테이션은 개별 개체를 훈련하기 위한 노동 집약적인 레이블링 작업을 필요로 하므로, 차량 추출을 위해 자동 무감독 인스턴스 세그멘테이션을 수행하는 방법에 대한 연구가 필요하다. 따라서 본 연구에서는 드론 영상의 차량 경계 박스에 대해 무감독 SVM 분류 기반의 차량 추출 기법을 제안하였다. 연구 결과, 차량을 89% 정확도로 추출할 수 있음을 확인하였으며 차량 내의 분광 특성이 크게 다른 경우에도 차량을 추출할 수 있음을 확인하였다.

A Fast Algorithm for Korean Text Extraction and Segmentation from Subway Signboard Images Utilizing Smartphone Sensors

  • Milevskiy, Igor;Ha, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • 제5권3호
    • /
    • pp.161-166
    • /
    • 2011
  • We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition (OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binarization is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in computational time. Text location is guided by user's marker-line placed over the region of interest in binarized image via smart phone touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved better quality than other methods.

신경 회로망을 이용한 자궁 경부 세포진 영상의 영역 분할에 관한 연구 (A Study on Segmentation of Uterine Cervical Pap-Smears Images Using Neural Networks)

  • 김선아;김백섭
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권3호
    • /
    • pp.231-239
    • /
    • 2001
  • This paper proposes a region segmenting method for the Pap-smear image. The proposed method uses a pixel classifier based on neural network, which consists of four stages : preprocessing, feature extraction, region segmentation and postprocessing. In the preprocessing stage, brightness value is normalized by histogram stretching. In the feature extraction stage, total 36 features are extracted from $3{\times}3$ or $5{\times}5$ window. In the region segmentation stage, each pixel which is associated with 36 features, is classified into 3 groups : nucleus, cytoplasm and background. The backpropagation network is used for classification. In the postprocessing stage, the pixel, which have been rejected by the above classifier, are re-classified by the relaxation algorithm. It has been shown experimentally that the proposed method finds the nucleus region accurately and it can find the cytoplasm region too.

  • PDF