• Title/Summary/Keyword: Image Detection System

Search Result 2,103, Processing Time 0.028 seconds

Projected Local Binary Pattern based Two-Wheelers Detection using Adaboost Algorithm

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • We propose a bicycle detection system riding on people based on modified projected local binary pattern(PLBP) for vision based intelligent vehicles. Projection method has robustness for rotation invariant and reducing dimensionality for original image. The features of Local binary pattern(LBP) are fast to compute and simple to implement for object recognition and texture classification area. Moreover, We use uniform pattern to remove the noise. This paper suggests that modified LBP method and projection vector having different weighting values according to the local shape and area in the image. Also our system maintains the simplicity of evaluation of traditional formulation while being more discriminative. Our experimental results show that a bicycle and motorcycle riding on people detection system based on proposed PLBP features achieve higher detection accuracy rate than traditional features.

  • PDF

Edge Detection Using an Ant System Algorithm (개미 시스템 알고리듬을 이용한 윤곽선 검출)

  • 이성열;이창훈
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.4
    • /
    • pp.38-45
    • /
    • 2003
  • This paper presents a meta-heuristic solution technique, Ant System (AS)algerian to solve edge detection problem. We define the quality of edge in terms of dissimilarity, continuity, thickness and length. We cast edge detection as a problem in cost minimization. This is achieved by the formulation of a cost function that inversely evaluates the quality of edge configuration. Twelve windows for enhancing dissimilarity regions based on the valid edge structures are used. The AS algorithm finds the optimal set of edge pixels based on the cost function. The experimental results show that the properly reduced set of edge pixels could be found regardless how complicated the image is.

  • PDF

Deep-Learning Based Real-time Fire Detection Using Object Tracking Algorithm

  • Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, we propose a fire detection system based on CCTV images using an object tracking technology with YOLOv4 model capable of real-time object detection and a DeepSORT algorithm. The fire detection model was learned from 10800 pieces of learning data and verified through 1,000 separate test sets. Subsequently, the fire detection rate in a single image and fire detection maintenance performance in the image were increased by tracking the detected fire area through the DeepSORT algorithm. It is verified that a fire detection rate for one frame in video data or single image could be detected in real time within 0.1 second. In this paper, our AI fire detection system is more stable and faster than the existing fire accident detection system.

A Method for Rear-side Vehicle Detection and Tracking with Vision System (카메라 기반의 측후방 차량 검출 및 추적 방법)

  • Baek, Seunghwan;Kim, Heungseob;Boo, Kwangsuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.233-241
    • /
    • 2014
  • This paper contributes to development of a new method for detecting rear-side vehicles and estimating the positions for blind spot region or providing the lane change information by using vision systems. Because the real image acquired during car driving has a lot of information including the target vehicle and background image as well as the noises such as lighting and shading, it is hard to extract only the target vehicle against the background image with satisfied robustness. In this paper, the target vehicle has been detected by repetitive image processing such as sobel and morphological operations and a Kalman filter has been also designed to cancel the background image and prevent the misreading of the target image. The proposed method can get faster image processing and more robustness rather than the previous researches. Various experiments were performed on the highway driving situations to evaluate the performance of the proposed algorithm.

Development of a Real Time Video Image Processing System for Vehicle Tracking (실시간 영상처리를 이용한 개별차량 추적시스템 개발)

  • Oh, Ju-Taek;Min, Joon-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.19-31
    • /
    • 2008
  • Video image processing systems(VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on wide-area detection, i.e., multi-lane surveillance algorithm provide traffic parameters with single camera such as flow and velocity, as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. The objective of this research was to relate traffic safety to VIPS tracking and this paper has developed a computer vision system of monitoring individual vehicle trajectories based on image processing, and offer the detailed information, for example, volumes, speed, and occupancy rate as well as traffic information via tripwire image detectors. Also the developed system has been verified by comparing with commercial VIP detectors.

  • PDF

A Study on the Fracture Detection of Multi-Point-Tool (다인공구의 파손검출에 관한 연구)

  • Choi, Young Kyu;Ryu, Bong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.67-77
    • /
    • 1995
  • In modern industry the requirement of automation of manufacturing process increases so that unmanned system has been popular as an ultimate goal of modern manufacturing process. In unmanned manufacturing process the tool fracture is a very serious problem because it results in the damage of workpieces and can stop the operation of whole manufa- turing system. In this study, image processing technique is used to detect the fracture of insert tip of face milling using multi-point-tool. In order to acquire the image information of fracture shape of rotation insert tip. We set up the optical system using a light beam chopper. In this system we can reduce the image degradation generated from stopped image of rotating insert tip using image restoration technique. We calculated the mean square error to diagnose the condition of tool fracture, and determind the criteria of tool fracture using experimental and staticstical method. From the results of this study we've developed non- contact detection technique of tool fracture using image processing method and proposed the fracture direction of automation and unmanned system considering the optimal time of tool change milling.

  • PDF

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

Implementation of fall-down detection algorithm based on Image Processing (영상처리 기반 낙상 감지 알고리즘의 구현)

  • Kim, Seon-Gi;Ahn, Jong-Soo;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.56-60
    • /
    • 2017
  • This paper describes the design and implementation of fall-down detection algorithm based on image processing. The fall-down detection algorithm separates objects by using background subtraction and binarization after grayscale conversion of the input image acquired by the camera, and recognizes the human body by using labeling operation. The recognized human body can be monitored on the display image, and an alarm is generated when fall-down is detected. By using computer simulation, the proposed algorithm has shown a detection rate of 90%. We verify the feasibility of the proposed system by verifying the function by using the prototype test implemented on the DSP image processing board.

Development of Automatic Precision Inspection System for Defect Detection of Photovoltaic Wafer (태양광 웨이퍼의 결함검출을 위한 자동 정밀검사 시스템 개발)

  • Baik, Seung-Yeb
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.666-672
    • /
    • 2011
  • In this paper, we describes the development of automatic inspection system for detecting the defects on photovoltaic wafer by using machine vision. Until now, The defect inspection process was manually performed by operators. So these processes caused the produce of poorly-made articles and inaccuracy results. To improve the inspection accuracy, the inspection system is not only configured, but the image processing algorithm is also developed. The inspection system includes dimensional verification and pattern matching which compares a 2-D image of an object to a pattern image the method proves to be computationally efficient and accurate for real time application and we confirmed the applicability of the proposed method though the experience in a complex environment.

Emergency Detection Method using Motion History Image for a Video-based Intelligent Security System

  • Lee, Jun;Lee, Se-Jong;Park, Jeong-Sik;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.39-42
    • /
    • 2012
  • This paper proposed a method that detects emergency situations in a video stream using MHI (Motion History Image) and template matching for a video-based intelligent security system. The proposed method creates a MHI of each human object through image processing technique such as background removing based on GMM (Gaussian Mixture Model), labeling and accumulating the foreground images, then the obtained MHI is compared with the existing MHI templates for detecting an emergency situation. To evaluate the proposed emergency detection method, a set of experiments on the dataset of video clips captured from a security camera has been conducted. And we successfully detected emergency situations using the proposed method. In addition, the implemented system also provides MMS (Multimedia Message Service) so that a security manager can deal with the emergency situation appropriately.