• Title/Summary/Keyword: Image Detect

Search Result 2,315, Processing Time 0.025 seconds

Detection Copy-Move Forgery in Image Via Quaternion Polar Harmonic Transforms

  • Thajeel, Salam A.;Mahmood, Ali Shakir;Humood, Waleed Rasheed;Sulong, Ghazali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4005-4025
    • /
    • 2019
  • Copy-move forgery (CMF) in digital images is a detrimental tampering of artefacts that requires precise detection and analysis. CMF is performed by copying and pasting a part of an image into other portions of it. Despite several efforts to detect CMF, accurate identification of noise, blur and rotated region-mediated forged image areas is still difficult. A novel algorithm is developed on the basis of quaternion polar complex exponential transform (QPCET) to detect CMF and is conducted involving a few steps. Firstly, the suspicious image is divided into overlapping blocks. Secondly, invariant features for each block are extracted using QPCET. Thirdly, the duplicated image blocks are determined using k-dimensional tree (kd-tree) block matching. Lastly, a new technique is introduced to reduce the flat region-mediated false matches. Experiments are performed on numerous images selected from the CoMoFoD database. MATLAB 2017b is used to employ the proposed method. Metrics such as correct and false detection ratios are utilised to evaluate the performance of the proposed CMF detection method. Experimental results demonstrate the precise and efficient CMF detection capacity of the proposed approach even under image distortion including rotation, scaling, additive noise, blurring, brightness, colour reduction and JPEG compression. Furthermore, our method can solve the false match problem and outperform existing ones in terms of precision and false positive rate. The proposed approach may serve as a basis for accurate digital image forensic investigations.

Development of an image processing system to detect automatically intmal and adventitial contours from intravascular ultrasound images (관상 동맥 초음파 영상에서 내벽 및 외벽 자동 추출을 위한 영상처리 알고리즘 개발)

  • Kim, Hie-Sik;Lee, Ho-Jae
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.79-83
    • /
    • 1997
  • A new computation algorithm to detect the intimal and adventitial contours from the intravascular images was developed. An image processing on gray level image was used. It uses arrays of pixels in each radial lines on the images. A Low-Pass filters was adopted at first step for one dimensional image processing. Some other calculations techniques were developed to increase the accuracy of automatically detected contours. The program implemented in C++ as a window95-base application.

  • PDF

Edge Detection of Characters on the Rubber Tire Image Using Fuzzy $\alpha-Cut$ Set (퍼지 $\alpha$ 컷 집합에 의한 고무 타이어 영상의 문자 윤관선 추출)

  • 김경민;박중조;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.71-80
    • /
    • 1994
  • The purpose of this paper is to explore the use of fuzzy set theory for image processing and analysis. As an application example, the fuzzy method of edge detection is proposed to extract the edges of raised characters on tires.In general, Sobel, Prewitt, Robert and LoG filters are used to detect the edge, but it is difficult to detect the edge because of ambiguity of representations, noise and general problems in the interpretation of tire image. Therefore, in his paper, the fuzzy property plane has been extracted from the spatial domain using the ramp-mapping function. And then the ideas of fuzzy MIN and MAX are applied in removing noise and enhancement of the image simultaneously. From the result of MIN and MAX procedure a new fuzzy singleton is generated by extracting the difference between adjacent membership function values. And the edges are extracted by applying fuzzy $\alpha$-cut set to the fuzzy singletion, Finally, these ideas are applied to the tire images.

  • PDF

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

The Measurement of the Crack in CCT Specimen Using the Image Processing Techniques (영상처리기법을 이용한 CCT 시편 균열의 자동관측법에 관한 연구)

  • Lee, Hyun-Woo;Mun, Gi-Tae;Oh, Se-Jong;Jeong, Byung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.528-533
    • /
    • 1997
  • In the analysis of fatigue crack propagation behavior, the crack length is one of the most important factors. In the test of crack propagation, compliance method is widely used to detect crack length. The measurement of surface crack length is not so easy with compliance method. In this study, the image processing technique was applied to measure the surface crack length. CCD(Charge-coupled device) camera was used to observe the crack image and the computer program to detect crack length from stored crack image was developed. CCT(Center Cracked Tension) specimen was used to compare the compliance method with the image processing technique. The crack length which detected by the image processing techniques was found to be well consistent with that from the optical measurement.

A Robust Face Detection Method Based on Skin Color and Edges

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.141-156
    • /
    • 2013
  • In this paper we propose a method to detect human faces in color images. Many existing systems use a window-based classifier that scans the entire image for the presence of the human face and such systems suffers from scale variation, pose variation, illumination changes, etc. Here, we propose a lighting insensitive face detection method based upon the edge and skin tone information of the input color image. First, image enhancement is performed, especially if the image is acquired from an unconstrained illumination condition. Next, skin segmentation in YCbCr and RGB space is conducted. The result of skin segmentation is refined using the skin tone percentage index method. The edges of the input image are combined with the skin tone image to separate all non-face regions from candidate faces. Candidate verification using primitive shape features of the face is applied to decide which of the candidate regions corresponds to a face. The advantage of the proposed method is that it can detect faces that are of different sizes, in different poses, and that are making different expressions under unconstrained illumination conditions.

Adaptive Attention Annotation Model: Optimizing the Prediction Path through Dependency Fusion

  • Wang, Fangxin;Liu, Jie;Zhang, Shuwu;Zhang, Guixuan;Zheng, Yang;Li, Xiaoqian;Liang, Wei;Li, Yuejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4665-4683
    • /
    • 2019
  • Previous methods build image annotation model by leveraging three basic dependencies: relations between image and label (image/label), between images (image/image) and between labels (label/label). Even though plenty of researches show that multiple dependencies can work jointly to improve annotation performance, different dependencies actually do not "work jointly" in their diagram, whose performance is largely depending on the result predicted by image/label section. To address this problem, we propose the adaptive attention annotation model (AAAM) to associate these dependencies with the prediction path, which is composed of a series of labels (tags) in the order they are detected. In particular, we optimize the prediction path by detecting the relevant labels from the easy-to-detect to the hard-to-detect, which are found using Binary Cross-Entropy (BCE) and Triplet Margin (TM) losses, respectively. Besides, in order to capture the inforamtion of each label, instead of explicitly extracting regional featutres, we propose the self-attention machanism to implicitly enhance the relevant region and restrain those irrelevant. To validate the effective of the model, we conduct experiments on three well-known public datasets, COCO 2014, IAPR TC-12 and NUSWIDE, and achieve better performance than the state-of-the-art methods.

Damage Detection and Damage Quantification of Temporary works Equipment based on Explainable Artificial Intelligence (XAI)

  • Cheolhee Lee;Taehoe Koo;Namwook Park;Nakhoon Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.

Lane & Obstacle Detection using Edge and Horizontal Projection (에지와 수평 투영을 이용한 차선 및 장애물 검출)

  • Chang, Un-Dong;Song, Young-Jun;Kim, Young-Gil;Kim, Dong-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.453-456
    • /
    • 2004
  • In this paper, we propose the method of lane and obstacle detection using edge and horizontal projection. we convert color image to gray image and detect edge. After lane detection using edge, we detect the obstacle using horizontal projection in the region of lane. The simulation shows that our method is able to detect lane and obstacle in the place of monotonous light.

  • PDF

Comparison of Two Methods for Stationary Incident Detection Based on Background Image

  • Ghimire, Deepak;Lee, Joonwhoan
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.48-55
    • /
    • 2012
  • In general, background subtraction based methods are used to detect the moving objects in visual tracking applications. In this paper we employed background subtraction based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection and we compare those in terms of detection performance and computational complexity. In the first approach we used single background and in the second approach we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped object. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short time fully occlusion and illumination changes, as well as it can operate in real time.

  • PDF