• Title/Summary/Keyword: Image Decoding

Search Result 222, Processing Time 0.021 seconds

Estimation of an intitial image for fast fractal decoding (고속 프랙탈 영상 복원을 위한 초기 영상 추정)

  • 문용호;박태희;백광렬;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.2
    • /
    • pp.325-333
    • /
    • 1997
  • In fractral decoding procedure, the reconstructed image is obtained by iteratively applying the contractive transform to an arbitrary initial image. But this method is not suitable for the fast decoding because convergence speed depends on the selection of initial image. Therefore, the initial image to achieve fast decoding should be selected. In this paper, we propose an initial image estimation that can be applied to various decoding methods. The initial image similar to the original image is estimated by using only the compressed data so that the proposed method does not affect the compression ratio. From the simulation, the PSNR of the proposed initial image is 6dB higher han that of ones iterated output image of conventional decoding with Babaraimage. Computations in addition and multiplication are reduced about 96%. On the other hands, if we apply the proposed initial image to other decoding algorithms, the faster convergence speed is expected.

  • PDF

A fast fractal decoding algorithm using averaged-image estimation (평균 영상 추정을 이용한 고속 플랙탈 영상 복원 알고리즘)

  • 문용호;박태희;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2355-2364
    • /
    • 1998
  • In conventional fractal decoding procedure, the reconstructed image is obtained by a rpredefined number of iterations starting with an arbitrary initial image. Its convergence speed depends on the selection of the initial image. It should be solved to get high speed convergence. In this paper, we theoretically reveal that conventional method is approximately decomposed into the decoding of the DC and AC components. Based on this fact, we proposed a novel fast fractal decoding algorithm made up of two steps. The averaged-image considered as an optimal initial image is estimated in the first step. In the second step, the reconstructe dimag eis genrated from the output image obtained in the first step. From the simulations, it is shown that the output image of the first step approximately converges to the averaged-image with only 15% calculations for one iteration of conventional method. And the proposed method is faster than various decoding mehtods and evenly equal to conventioanl decoding with the averaged-image. In addition, the proposed method can be applied to the compressed data resulted from the various encoding methods because it does not impose any constraints in the encoding procedure to get high decoding speed.

  • PDF

A Study on East Fractal Image Decoder Using a Codebook Image (코드북 영상을 이용한 고속 프랙탈 영상 복호기에 관한 연구)

  • 이기욱;곽노윤
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.434-440
    • /
    • 2003
  • Since Jacquine introduced the image coding algorithm using fractal theory, many fractal image compression algorithms providing good quality at low bit rate have been proposed by Fisher and Beaumount et al.. But a problem of the previous implementations is that the decoding rests on an iterative procedure whose complexity is image-dependent. This paper proposes an iterative-free fractal image decoding algorithm to reduce the decoding time. In the proposed method, under the encoder previously with the same codebook image as an initial image to be used at the decoder, the fractal coefficients are obtained through calculating the similarity between the codebook image and an input image to be encoded. As the decoding process can be completed with received fractal coefficients and predefined initial image without repeated iterations, the decoding time could be remarkably reduced.

  • PDF

Optical Image Hiding Technique using Real-Valued Decoding Key (실수값 복원키를 이용한 광 영상 은닉 기술)

  • Cho, Kyu-Bo;Seo, Dong-Hoan;Choi, Eun-chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • In this paper, an optical image hiding technique using real-valued decoding key is proposed. In the embedding process, a each zero-padded original image placed in a quadrants on an input plane is multiplied by a statistically independent random phase pattern and is Fourier transformed. An encoded image is obtained by taking the real-valued data from the Fourier transformed image. And then a phase-encoded pattern, used as a hidden image and a decoding key, is generated by the use of multiple phase wrapping from the encoded images. A transmitted image is made from the linear superposition of the weighted hidden images and a cover image. In reconstruction process, the mirror reconstructed images can be obtained at two quadrants by the inverse-Fourier transform of the product of the transmitted image and the decoding key. Computer simulation and optical experiment are demonstrated in order to confirm the proposed technique.

A Iterative-free Fractal Decoding Algorithm Based on Shared Initial Image (공유된 초기 영상에 기반한 무반복 프랙탈 복호 알고리즘)

  • 곽노윤;한군희
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.328-332
    • /
    • 2003
  • Since Jacquine introduced the image coding algorithm using fractal theory, many fractal image compression algorithms providing good quality at low bit rate have been proposed by Fisher and Beaumount et al.. But a problem of the previous implementations is that the decoding rests on an iterative procedure whose complexity is image -dependent. This paper proposes an iterative-free fractal image decoding algorithm to reduce the decoding time. In the proposed method, under the encoder previously with the same codebook image as an initial image to be used at the decoder, the fractal coefficients are obtained through calculating the similarity between the codebook image and a input image to be encoded. As the decoding process can be completed with received fractal coefficients and predefined initial image without repeated iterations, the decoding time could be remarkably reduced.

  • PDF

An Improved Fractal Color Image Decoding Based on Data Dependence and Vector Distortion Measure (데이터 의존성과 벡터왜곡척도를 이용한 개선된 프랙탈 칼라영상 복호화)

  • 서호찬;정태일;류권열;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.3
    • /
    • pp.289-296
    • /
    • 1999
  • In this paper, an improved fractal color image decoding method using the data dependence parts and the vector distortion measure is proposed. The vector distortion measure exploits the correlation between different color components. The pixel in RGB color space can be considered as a 30dimensional vector with elements of RGB components. The root mean square error(rms) in RGB color for similarity measure of two blocks R and R' was used. We assume that various parameter necessary in image decoding are stored in the transform table. If the parameter is referenced in decoding image, then decoding is performed by the recursive decoding method. If the parameter is not referenced in decoding image, then the parameters recognize as the data dependence parts and store its in the memory. Non-referenced parts can be decoded only one time, because its domain informations exist in the decoded parts by the recursive decoding method. Non-referenced parts are defined the data dependence parts. Image decoding method using data dependence classifies referenced parts and non-referenced parts using information of transform table. And the proposed method can be decoded only one time for R region decoding speed than Zhang & Po's method, since it is decreased the computational numbers by execution iterated contractive transformations for the referenced range only.

  • PDF

A Study on Decoding Characteristic Analysis of Non-iterative Fractal Image Compression (무반복 프랙탈 영상 압축의 복호 특성 분석에 관한 연구)

  • Kwak No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.5 no.3
    • /
    • pp.199-204
    • /
    • 2004
  • A problem of many fractal image compression algorithms providing good quality at low bit rate is that the decoding time rests on an iterative procedure whose complexity is imag-dependent. This paper proposes an iterative-free fractal image decoding algorithm to reduce the decoding time. In the proposed method, under the encoder previously with the same codebook image as an initial image to be used at the decoder, the fractal coefficients are obtained through calculating the similarity between the codebook image and an input image to be encoded. As the decoding time could be remarkably reduced. For verifying the validity and universality of proposed method, We evaluated and analyzed the performance of decoding time and image quality for a number of still images and a moving picture with different distributed characteristics.

  • PDF

Design md. Implementation of Image Decoder Based on Non--iterative Fractal Decoding Algorithm. (무반복 프랙탈 복호화 알고리즘 기반의 영상 복호화기의 설계 및 구현)

  • 김재철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.296-306
    • /
    • 2003
  • In this paper, algorithm for non-iterative decoding method is proposed and fractal image decoder based on non-iterative fractal decoding algorithm used general purpose digital signal processors is designed and implemented. The algorithm is showed that the attractor image can be obtained analytically whe n the image is encoded using the fractal algorithm proposed by Monro and Dudbridge, in which the corresponding domain block for a range block is fifed. Using the analytical formulas, we can obtain the attractor image without iteration procedure. And we get general formulas of obtained analytical formulas. Computer simulation results for various test images show that we can increase the image decoding speed by more than five times when we use the analytical formulas compared to the previous iteration methods. The fractal image decoder contains two ADSP2181's and perform image decoding by three stage pipeline structure. The performance tests of the implemented decoder is elapsed 31.2ms/frame decoding speed for QCIF data when all the frames are decoded. The results enable us to process the real-time fractal decoding over 30 frames/sec.

A new fractal image decoding algorithm with fast convergence speed (고속 수렴 속도를 갖는 새로운 프랙탈 영상 복호화 알고리듬)

  • 유권열;문광석
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.74-83
    • /
    • 1997
  • In this paper, we propose a new fractal image decoding algorithm with fast convergence speed by using the data dependence and the improved initial image estimation. Conventional method for fractal image decoding requires high-degrdd computational complexity in decoding process, because of iterated contractive transformations applied to whole range blocks. On proposed method, Range of reconstruction imagte is divided into referenced range and data dependence region. And computational complexity is reduced by application of iterated contractive transformations for the referenced range only. Data dependence region can be decoded by one transformations when the referenced range is converged. In addition, more exact initial image is estimated by using bound () function in case of all, and an initial image more nearer to a fixed point is estimated by using range block division estimation. Consequently, the convergence speed of reconstruction iamge is improved with 40% reduction of computational complexity.

  • PDF

A New Mobile Watermarking Scheme Based on Display-capture

  • Bae, Jong-Wook;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.815-823
    • /
    • 2009
  • Most of existing watermarking schemes insert and extract a watermark, focusing on the visual conservation of an original image. However, existing watermarking schemes could be difficult for a watermark detection in case of various distortion caused by display-capture devices. Therefore, we propose a new display-capture based mobile watermarking scheme. The proposed watermarking scheme is a new concept for embedding a watermark, which uses the generated image instead of a given original image. For effective watermark decoding, we also present a method for detecting the background image whose error bit can not be corrected because of various heavy distortion and for avoiding it from the decoding process. For this scheme, we adopt distortion coefficients of camera calibration when we separate a background image from a captured image. For finding available correction bits of ECC through the decoding process, we capture 30,000 images and then calculate the separation ratio of a background image and the average error bits per an image. As experimental result, the separation ratio of a background image is about 96.5% in 30,000 captured image. And the false alarm ratio shows about $5.18{\times}10^{-4}$ in the separated background image. And also we can confirm the availability of real-time processing because the mean execution time is about 82ms per an image for capturing and decoding.

  • PDF