• Title/Summary/Keyword: Image Databases

Search Result 238, Processing Time 0.027 seconds

Fractal dimension analysis as an easy computational approach to improve breast cancer histopathological diagnosis

  • Lucas Glaucio da Silva;Waleska Rayanne Sizinia da Silva Monteiro;Tiago Medeiros de Aguiar Moreira;Maria Aparecida Esteves Rabelo;Emílio Augusto Campos Pereira de Assis;Gustavo Torres de Souza
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.6.1-6.9
    • /
    • 2021
  • Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a concern. Fractal dimension analysis is a computational image processing technique that allows assessing the degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A) Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised 100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal dimension (Db) results. Images on set A on 40x magnification were statistically different (p = 0.0003), whereas images on 400x did not present differences in their means. On set B, the mean Db values presented promising statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all p < 0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~ 99% specificity in diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to understand the progression of the histological alterations in cancer.

Using POSTIT Eye Gaze Tracking in Real-time (POSTIT정보 이용한 실시간 눈동자 시선 추적)

  • Kim, Mi-Kyung;Choi, Yeon-Seok;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.750-753
    • /
    • 2012
  • A method detecting the position of eyes and tracking a gaze point of eyes in realtime using POSIT is suggested in this paper. This algorithm find out a candidate area of eyes using topological characteristics of eyes and then decides the center of eyes using physical characteristics of eyes. To find the eyes, a nose and a mouth are used for POSIT. The experimental results show that proposed method effectively performed detection of eyes in facial image in FERET databases and gave high performance when used for tracking a gaze point of eyes.

  • PDF

Human Face Recognition using Multi-Class Projection Extreme Learning Machine

  • Xu, Xuebin;Wang, Zhixiao;Zhang, Xinman;Yan, Wenyao;Deng, Wanyu;Lu, Longbin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.323-331
    • /
    • 2013
  • An extreme learning machine (ELM) is an efficient learning algorithm that is based on the generalized single, hidden-layer feed-forward networks (SLFNs), which perform well in classification applications. Many studies have demonstrated its superiority over the existing classical algorithms: support vector machine (SVM) and BP neural network. This paper presents a novel face recognition approach based on a multi-class project extreme learning machine (MPELM) classifier and 2D Gabor transform. First, all face image features were extracted using 2D Gabor filters, and the MPELM classifier was used to determine the final face classification. Two well-known face databases (CMU-PIE and ORL) were used to evaluate the performance. The experimental results showed that the MPELM-based method outperformed the ELM-based method as well as other methods.

  • PDF

Literature Review of Clinical Studies for the Relationship between Ultrasonographic Examination and Syndrome Differentiation Classification in Chinese Medicine (초음파영상검사와 한의변증분류와의 관계와 관련된 중의학 임상연구에 대한 문헌고찰)

  • Hwang, Ji Hye;Ko, Dongkun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.217-225
    • /
    • 2018
  • This study was to investigate the relationship between ultrasonographic examination and pattern identification classification on cinical studies in chinese medicine. We searched clinical studies related correlation between ultrasonographic examination and pattern identification classification in chinese medicine, that published from 2013 to 2016 in China National Knowledge Infrastructure (CNKI) databases by keywords, 'ultrasound(超?)', 'chinese medicine(中?)', 'syndrome differentiation (辨?)'. Seventeen studies were found. There were 7 studies of gynecological diseases including polycystic ovary syndrome and uterine myoma, 5 studies of fatty liver, 3 studies of arthritis, and 1 studie of thyroid nodule and lymphadenopathy respectively. As a result, ii is thought that there was a certain degree of correlation between the change of the ultrasonographic image and the pathological types according to traditional chinese medicine (TCM) syndrome differentiation and ultrasonographic examination could be used as secondary means for the TCM syndrome differentiation classification. In conclusion, by using ultrasonograph device in a medicinal way of TCM and traditional korean medicine (TKM), it is thought that more detailed and accurate diagnosis and treatment are possible and the evidence for reasonableness of syndrome differentiation in TCM and TKM its validity can be secured.

THE AKARI PROJECT: LEGACY AND DATA PROCESSING STATUS

  • NakagawaI, Takao;Yamamura, Issei
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.5-9
    • /
    • 2017
  • This paper provides an overview of the AKARI mission, which was the first Japanese satellite dedicated to infrared astronomy. The AKARI satellite was launched in 2006, and performed both an all-sky survey and pointed observations during its 550 days in the He-cooled mission phases (Phases 1 and 2). After the He ran out, we continued near-infrared observations with mechanical cryocoolers (Phase 3). Due to a failure of its power supply, AKARI was turned off in 2011. The AKARI data are unique in terms of the observed wavelengths as well as the sky coverage, and provide a unique legacy resource for many astronomical studies. Since April 2013, a dedicated new team has been working to refine the AKARI data processing. The goal of this activity is to provide processed datasets for most of the AKARI observations in a Science Ready form, so that more users can utilize the AKARI data in their astronomical research. The data to be released will include revised All-Sky Point Source Catalogues, All-Sky Image Maps, as well as high-sensitivity images and spectra obtained by pointed observations. We expect that the data will be made public by in the Spring of 2016.

Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer (결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교)

  • Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.

Detection of Faces Located at a Long Range with Low-resolution Input Images for Mobile Robots (모바일 로봇을 위한 저해상도 영상에서의 원거리 얼굴 검출)

  • Kim, Do-Hyung;Yun, Woo-Han;Cho, Young-Jo;Lee, Jae-Jeon
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.

  • PDF

A Secure Face Cryptogr aphy for Identity Document Based on Distance Measures

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1156-1162
    • /
    • 2013
  • Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.

Spatial-temporal texture features for 3D human activity recognition using laser-based RGB-D videos

  • Ming, Yue;Wang, Guangchao;Hong, Xiaopeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1595-1613
    • /
    • 2017
  • The IR camera and laser-based IR projector provide an effective solution for real-time collection of moving targets in RGB-D videos. Different from the traditional RGB videos, the captured depth videos are not affected by the illumination variation. In this paper, we propose a novel feature extraction framework to describe human activities based on the above optical video capturing method, namely spatial-temporal texture features for 3D human activity recognition. Spatial-temporal texture feature with depth information is insensitive to illumination and occlusions, and efficient for fine-motion description. The framework of our proposed algorithm begins with video acquisition based on laser projection, video preprocessing with visual background extraction and obtains spatial-temporal key images. Then, the texture features encoded from key images are used to generate discriminative features for human activity information. The experimental results based on the different databases and practical scenarios demonstrate the effectiveness of our proposed algorithm for the large-scale data sets.

An Improved method of Two Stage Linear Discriminant Analysis

  • Chen, Yarui;Tao, Xin;Xiong, Congcong;Yang, Jucheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1243-1263
    • /
    • 2018
  • The two-stage linear discrimination analysis (TSLDA) is a feature extraction technique to solve the small size sample problem in the field of image recognition. The TSLDA has retained all subspace information of the between-class scatter and within-class scatter. However, the feature information in the four subspaces may not be entirely beneficial for classification, and the regularization procedure for eliminating singular metrics in TSLDA has higher time complexity. In order to address these drawbacks, this paper proposes an improved two-stage linear discriminant analysis (Improved TSLDA). The Improved TSLDA proposes a selection and compression method to extract superior feature information from the four subspaces to constitute optimal projection space, where it defines a single Fisher criterion to measure the importance of single feature vector. Meanwhile, Improved TSLDA also applies an approximation matrix method to eliminate the singular matrices and reduce its time complexity. This paper presents comparative experiments on five face databases and one handwritten digit database to validate the effectiveness of the Improved TSLDA.