• Title/Summary/Keyword: Image Data Transmission

Search Result 514, Processing Time 0.034 seconds

A Study of the Thermal Characteristics of Flooring Materials, Wood, Rock, Aluminum through Observation of its Radiant Environment in the Summer (하절기 복사환경 관측을 통한 석재, 목재, 알루미늄 바닥재의 열특성 평가)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.35-44
    • /
    • 2008
  • In this study, the experiment of the measuring of four different types of flooring materials' thermal characteristics was conducted and examined during the summer. The experimental materials were arranged on the existing slab of the roof, and then its thermal characteristics were examined from the point of view of thermal radiation analysis. The aim of this study is ultimately to draw the fundamental data for improvements in a building's thermal function and reduce the urban heat island phenomena through optimizing the thermal characteristics of the surface covering materials of a building. The results from this study are as follows; 1) Each experimental material's albedo was calculated as 0.83 on the aluminum panel, 0.40 on the rock block, 0.37 on the wood deck and 0.21 on the concrete. It shows that the concrete material, which has the lowest short wave reflective rate, absorbed the most radiation energy and the aluminium panel has absorbed the lowest radiation energy. 2) From the each experimental object's value of the long wave radiation, the concrete material measured the highest, at $628W/m^2$, and the aluminium panel measured the lowest at $412W/m^2$. Therefore, it verifies that the experimental objects' own radiation rate determines the amount of the long wave radiation. 3) The degree of energy absorbency of a building's surface covering materials is greatly influenced by its own albedo and radiation rate, Therefore, it needs to be considered for the improvements in a building's thermal function and reducing the urban heat island phenomena. 4) According to the evaluation result of the each experimental object's overall heat transmission screening function on the roof of a building, the wooden deck is proven to be an excellent material for excluding the outside temperature differences effectively with its characteristic of low heat capacity and conduction. Also its surface temperature on the roof slab and the temperature difference during the day were both measured at low.

Remote Access and Data Acquisition System for High Voltage Electron Microscopy (초고전압 투과전자현미경의 원격제어 및 데이터 획득 시스템)

  • Ahn, Young-Heon;Kang, Ji-Seoun;Jung, Hyun-Joon;Kim, Hyeong-Seog;Jung, Hyung-Soo;Han, Hyuck;Jeong, Jong-Man;Gu, Jung-Eok;Lee, Sang-Dong;Lee, Jy-Soo;Cho, Kum-Won;Kim, Youn-Joong;Yeom, Heon-Young
    • Applied Microscopy
    • /
    • v.36 no.1
    • /
    • pp.7-16
    • /
    • 2006
  • A new remote access system for a 1.3 MV high voltage electron microscope has been developed. Almost all essential functions for HVEM operation, huck as stage control, specimen tilting, TV camera selection and image recording, are successfully embedded into this prototype of the remote system. Particularly, this system permits perfect and precise operation of the goniometer and also controls the high resolution digital camera via simple Web browsers. Transmission of control signals and communication with the microscope is accomplished via the global ring network for advanced applications development (GLORIAD). This fact makes it possible to realize virtual laboratory to carry out practical national and international HVEM collaboration by using the present system

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

Analysis of Feature Map Compression Efficiency and Machine Task Performance According to Feature Frame Configuration Method (피처 프레임 구성 방안에 따른 피처 맵 압축 효율 및 머신 태스크 성능 분석)

  • Rhee, Seongbae;Lee, Minseok;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.318-331
    • /
    • 2022
  • With the recent development of hardware computing devices and software based frameworks, machine tasks using deep learning networks are expected to be utilized in various industrial fields and personal IoT devices. However, in order to overcome the limitations of high cost device for utilizing the deep learning network and that the user may not receive the results requested when only the machine task results are transmitted from the server, Collaborative Intelligence (CI) proposed the transmission of feature maps as a solution. In this paper, an efficient compression method for feature maps with vast data sizes to support the CI paradigm was analyzed and presented through experiments. This method increases redundancy by applying feature map reordering to improve compression efficiency in traditional video codecs, and proposes a feature map method that improves compression efficiency and maintains the performance of machine tasks by simultaneously utilizing image compression format and video compression format. As a result of the experiment, the proposed method shows 14.29% gain in BD-rate of BPP and mAP compared to the feature compression anchor of MPEG-VCM.

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

The Evaluation for Attenuation Map using Low Dose in PET/CT System (PET/CT 시스템에서 감쇠지도를 만들기 위한 저선량 CT 평가)

  • Nam, So-Ra;Cho, Hyo-Min;Jung, Ji-Young;Lee, Chang-Lae;Lim, Han-Sang;Park, Hoon-Hee;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.134-138
    • /
    • 2007
  • The current PET/CT system with high quality CT images not only increases diagnostic value by providing anatomic localization, but also shortens the acquisition time for attenuation correction than primary PET system. All commercially available PET/CT system uses the CT scan for attenuation correction instead of the transmission scan using radioactive source such as $^{137}Cs,\;^{68}Ge$. However the CT scan may substantially increase the patient dose. The purpose of this study was to evaluate quality of PET images reconstructed by CT attenuation map using various tube currents. in this study, images were acquired for 3D Hoffman brain phantom and cylindrical phantom using GE DSTe PET/CT system. The emission data were acquired for 10 min using phantoms after injecting 44.03 MBq of $^{18}F-FDG$. The CT images for attenuation map were acquired by changing tube current from 10 mA to 95 mA with fixed exposure time of 8 sec and fixed tube voltage of 140 kVp. The PET images were reconstructed using these CT attenuation maps. Image quality of CT images was evaluated by measuring SD (standard deviation) of cylindrical phantom which was filled with water and $^{18}F-FDG$ solution. The PET images were evaluated by measuring the activity ratio between gray matter and white matter in Hoffman phantom images. SDs of CT images decrease by increasing tube current. When PET images were reconstructed using CT attenuation maps with various tube currents, the activity ratios between gray matter and white matter of PET images were almost same. These results indicated that the quality of the PET images using low dose CT data were comparable to the PET images using general dose CT data. Therefore, the use of low dose CT is recommended than the use of general dose CT, when the diagnostic high quality CT is not required. Further studies may need to be performed for other system, since this study is limited to the GE DSTe system used in this study.

  • PDF

Intergrowth and Interlayering of Muscovite, Chlorite, and Biotite in a Garnet Zone Metamorphic Rock of the Ogcheon Belt, South Korea (옥천대의 석류석데 변성암에서 산출되는 백운모, 녹니석 및 흑운모의 Intergrowth와 Interlayering)

  • Yeong Boo Lee;Jung Hoo Lee;Chang Whan Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.122-131
    • /
    • 2002
  • Muscovite, chlorite and biotite in metapelites of the Ogcheon Hetamorphic Belt are studied using electron probe microanalysis (EPMA), backscattered electron images (BEI) of scanning electron microscopy (SEM) and lattice fringe images of transmission electron microscopy (TEM). These minerals are observed to be intergrown under a polarized light microscope and are apparently interlayered below EPMA resolution; EPMA data often indicate mixtures of phyllosilicates such as muscovite/chlorite (M/C), biotite/chlorite (B/C), muscovite/pyrophyllite/chlorite (M/P/C). biotite/pyrophyllite/chlorite (B/P/C) or biotite/muscovite/chlorite (B/M/C). BEI observations show that the three minerals (muscovite, chlorite and biotite) are mixed at various scales in a grain through the garnet zone, and the interlayering of the three minerals are observed from TEM lattice fringe images and selected area electron diffraction patterns. The result of TEM observations reveals that 7-$\AA$ layers (serpentine, precursor of chlorite) are interlayered within 10-$\AA$ layers (muscovite) at 100~200 $\AA$ scale as well as M/C in the chlorite zone. The 7-$\AA$ layers become smaller in size and less frequent in the biotite tone, and 10-$\AA$ layers are interlayered with chlorite (14 $\AA$) at an individual layer scale. The 7-$\AA$ layers are no longer observed in the garnet zone, and 10-$\AA$ layers (biotite) are interlayered with chlorite (B/C) at 50~100 $\AA$ scale. Relatively large scale (1000~2000 $\AA$) of intergrowth is also frequently observed from the garnet zone samples. However, rocks from all three metamorphic zones show interlayering of a few units of 7-, 10- and 14-$\AA$ layers with each other at TEM observations. The result of this study implies that metamorphic minerals such as muscovite, chlorite and biotite form through disequilibrum mineral reactions resulting in inhomogenious phases.

Evaluating of the Effectiveness of RTK Surveying Performance Based on Low-cost Multi-Channel GNSS Positioning Modules (다채널 저가 GNSS 측위 모듈기반 RTK 측량의 효용성 평가)

  • Kim, Chi-Hun;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.53-65
    • /
    • 2022
  • According to the advancement of the GNSS satellite positioning system, the module of hardware and operation software reflecting accuracy and economical efficiency is implemented in the user sector including the multi-channel GNSS receiver, the multi-frequency external antenna and the mobile app (App) base public positioning analysis software etc., and the multichannel GNSS RTK positioning of the active configuration method (DIY, Do it yourself) is possible according to the purpose of user. Especially, as the infrastructure of multi-GNSS satellite is expanded and the potential of expansion of utilization according to various modules is highlighted, interest in the utilization of multi-channel low-cost GNSS receiver module is gradually increasing. The purpose of this study is to review the multi-channel low-cost GNSS receivers that are appearing in the mass market in various forms and to analyze the utilization plan of the "address information facility investigation project" of the Ministry of Public Administration and Security by constructing the multi-channel low-cost GNSS positioning module based RTK survey system (hereinafter referred to as "multi-channel GNSS RTK module positioning system"). For this purpose, we constructed a low-cost "multi-channel GNSS RTK module positioning system" by combining related modules such as U-blox's F9P chipset, antenna, Ntrip transmission of GNSS observation data and RTK positioning analysis app through smartphone. Kinematic positioning was performed for circular trajectories, and static positioning was performed for address information facilities. The results of comparative analysis with the Static positioning performance of the geodetic receivers were obtained with 5 fixed points in the experimental site, and the good static surveying performance was obtained with the standard deviation of average ±1.2cm. In addition, the results of the test point for the outline of the circular structure in the orthogonal image composed of the drone image analysis and the Kinematic positioning trajectory of the low cost RTK GNSS receiver showed that the trajectory was very close to the standard deviation of average ±2.5cm. Especially, as a result of applying it to address information facilities, it was possible to verify the utility of spatial information construction at low cost compared to expensive commercial geodetic receivers, so it is expected that various utilization of "multi-channel GNSS RTK module positioning system"

Assessment of Attenuation Correction Techniques with a $^{137}Cs$ Point Source ($^{137}Cs$ 점선원을 이용한 감쇠 보정기법들의 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Son, Hye-Kyoung;Park, Yun-Young;Park, Hae-Joung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Purpose: The objective of this study was to assess attenuation correction algorithms with the $^{137}Cs$ point source for the brain positron omission tomography (PET) imaging process. Materials & Methods: Four different types of phantoms were used in this study for testing various types of the attenuation correction techniques. Transmission data of a $^{137}Cs$ point source were acquired after infusing the emission source into phantoms and then the emission data were subsequently acquired in 3D acquisition mode. Scatter corrections were performed with a background tail-fitting algorithm. Emission data were then reconstructed using iterative reconstruction method with a measured (MAC), elliptical (ELAC), segmented (SAC) and remapping (RAC) attenuation correction, respectively. Reconstructed images were then both qualitatively and quantitatively assessed. In addition, reconstructed images of a normal subject were assessed by nuclear medicine physicians. Subtracted images were also compared. Results: ELEC, SAC, and RAC provided a uniform phantom image with less noise for a cylindrical phantom. In contrast, a decrease in intensity at the central portion of the attenuation map was noticed at the result of the MAC. Reconstructed images of Jaszack and Hoffan phantoms presented better quality with RAC and SAC. The attenuation of a skull on images of the normal subject was clearly noticed and the attenuation correction without considering the attenuation of the skull resulted in artificial defects on images of the brain. Conclusion: the complicated and improved attenuation correction methods were needed to obtain the better accuracy of the quantitative brain PET images.