• Title/Summary/Keyword: Image Clustering

Search Result 601, Processing Time 0.021 seconds

Binary Visual Word Generation Techniques for A Fast Image Search (고속 이미지 검색을 위한 2진 시각 단어 생성 기법)

  • Lee, Suwon
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1313-1318
    • /
    • 2017
  • Aggregating local features in a single vector is a fundamental problem in an image search. In this process, the image search process can be speeded up if binary features which are extracted almost two order of magnitude faster than gradient-based features are utilized. However, in order to utilize the binary features in an image search, it is necessary to study the techniques for clustering binary features to generate binary visual words. This investigation is necessary because traditional clustering techniques for gradient-based features are not compatible with binary features. To this end, this paper studies the techniques for clustering binary features for the purpose of generating binary visual words. Through experiments, we analyze the trade-off between the accuracy and computational efficiency of an image search using binary features, and we then compare the proposed techniques. This research is expected to be applied to mobile applications, real-time applications, and web scale applications that require a fast image search.

Fingerprint Image Quality Analysis for Knowledge-based Image Enhancement (지식기반 영상개선을 위한 지문영상의 품질분석)

  • 윤은경;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.911-921
    • /
    • 2004
  • Accurate minutiae extraction from input fingerprint images is one of the critical modules in robust automatic fingerprint identification system. However, the performance of a minutiae extraction is heavily dependent on the quality of the input fingerprint images. If the preprocessing is performed according to the fingerprint image characteristics in the image enhancement step, the system performance will be more robust. In this paper, we propose a knowledge-based preprocessing method, which extracts S features (the mean and variance of gray values, block directional difference, orientation change level, and ridge-valley thickness ratio) from the fingerprint images and analyzes image quality with Ward's clustering algorithm, and enhances the images with respect to oily/neutral/dry characteristics. Experimental results using NIST DB 4 and Inha University DB show that clustering algorithm distinguishes the image Quality characteristics well. In addition, the performance of the proposed method is assessed using quality index and block directional difference. The results indicate that the proposed method improves both the quality index and block directional difference.

A Study on the Hybrid Fractal clustering Algorithm with SOFM vector Quantizer (벡터양자화기와 혼합된 프렉탈의 클러스터링 알고리즘에 대한 연구)

  • 김영정;박원우;김상희;임재권
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.195-198
    • /
    • 2000
  • Fractal image compression can reduce the size of image data by contractive mapping of original image. The mapping is affine transformation to find the block(called range block) which is the most similar to the original image. Fractal is very efficient way to reduce the data size. However, it has high distortion rate and requires long encoding time. In this paper, we present the simulation result of fractal and VQ hybrid systems which use different clustering algorithms, normal and improved competitive learning SOFM. The simulation results showed that the VQ hybrid fractal using improved competitive learning SOFM has better distortion rate than the VQ hybrid fractal using normal SOFM.

  • PDF

A Study on the Hybrid Fractal clustering Algorithm with SOFM vector Quantizer (신경망이 벡터양자화와 프랙탈 혼합시스템에 미치는 영향)

  • 김영정;박원우;김상희;임재권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Fractal image compression can reduce the size of image data by contractive mapping of original image. The mapping is affine transformation to find the block(called range block) which is the most similar to the original image. Fractal is very efficient way to reduce the data size. However, it has high distortion rate and requires long encoding time. In this paper, we present the simulation result of fractal and VQ hybrid systems which use different clustering algorithms, normal and improved competitive learning SOFM. The simulation results showed that the VQ hybrid fractal using improved competitive learning SOFM has better distortion rate than the VQ hybrid fractal using normal SOFM.

  • PDF

On-line Inspection Algorithm of Brown Rice Using Image Processing (영상처리를 이용한 현미의 온라인 품위판정 알고리즘)

  • Kim, Tae-Min;Noh, Sang-Ha
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • An on-line algorithm that discriminates brown rice kernels on their echelon feeder using color image processing is presented for quality inspection. A rapid color image segmentation algorithm based on Bayesian clustering method was developed by means of the look-up table which was made from the significant clusters selected by experts. A robust estimation method was presented to improve the stability of color clusters. Discriminant analysis of color distributions was employed to distinguish nine types of brown rice kernels. Discrimination accuracies of the on-line discrimination algorithm were ranged from 72% to 85% for the sound, cracked, green-transparent and green-opaque, greater than 93% for colored, red, and unhulled, about 92% for white-opaque and 67% for chalky, respectively.

Automatic Target Detection Using the Extended Fuzzy Clustering (확장된 Fuzzy Clustering 알고리즘을 이용한 자동 목표물 검출)

  • 김수환;강경진;이태원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.842-913
    • /
    • 1991
  • The automatic target detection which automatically identifies the location of the target with its input image is one of the significant subjects of image processing field. Then, there are some problems that should be solved to detect the target automatically from the input image. First of all, the ambiguity of the boundary between targets or between a target and background should be solved and the target should be searched adaptively. In other words, the target should be identified by the relative brightness to the background, not by the absolute brightness. In this paper, to solve these problems, a new algorithm which can identify the target automatically is proposed. This algorithm uses the set of fuzzy for solving the ambiguity between the boundaries, and using the weight according to the brightness of data in the input image, the target is identified adaptively by the relative brightness to the background. Applying this algorithm to real images, it is experimentally proved that it is can be effectively applied to the automatic target detection.

  • PDF

Disease Detection Algorithm Based on Image Processing of Crops Leaf (잎사귀 영상처리기반 질병 감지 알고리즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Koh, Jin-Gwang
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • Many Studies have been actively conducted on the early diagnosis of the crop pest utilizing IT technology. The purpose of the paper is to discuss on the image processing method capable of detecting the crop leaf pest prematurely by analyzing the image of the leaf received from the camera sensor. This paper proposes an algorithm of diagnosing leaf infection by utilizing an improved K means clustering method. Leaf infection grouping test showed that the proposed algorithm illustrated a better performance in the qualitative evaluation.

  • PDF

Development of a Tank Crew Protection System Using Moving Object Area Detection from Vision based (비전 기반 움직임 영역 탐지를 이용한 전차 승무원 보호 시스템 개발)

  • Choi, Kwang-Mo;Jang, Dong-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.14-21
    • /
    • 2005
  • This paper describes the system for detecting the tank crew's(loader's) hand, arm, head and the upper half of the body in a danger area between the turret ceiling and the upper breech mechanism by computer vision-based method. This system informs danger of pressed to death to gunner and commander for the safety of operating mission. The camera mounted ort the top portion of the turret ceiling. The system sets search moving object from this image and detects by using change of image, laplacian operator and clustering algorithm in this area. It alarms the tank crews when it's judged that dangerous situation for operating mission. The result In this experiment shows that the detection rate maintains in $81{\sim}98$ percents.

Fast Outlier Removal for Image Registration based on Modified K-means Clustering

  • Soh, Young-Sung;Qadir, Mudasar;Kim, In-Taek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • Outlier detection and removal is a crucial step needed for various image processing applications such as image registration. Random Sample Consensus (RANSAC) is known to be the best algorithm so far for the outlier detection and removal. However RANSAC requires a cosiderable computation time. To drastically reduce the computation time while preserving the comparable quality, a outlier detection and removal method based on modified K-means is proposed. The original K-means was conducted first for matching point pairs and then cluster merging and member exclusion step are performed in the modification step. We applied the methods to various images with highly repetitive patterns under several geometric distortions and obtained successful results. We compared the proposed method with RANSAC and showed that the proposed method runs 3~10 times faster than RANSAC.

Noisy Image Segmentation via Swarm-based Possibilistic C-means

  • Yu, Jeongmin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we propose a swarm-based possibilistic c-means(PCM) algorithm in order to overcome the problems of PCM, which are sensitiveness of clustering performance due to initial cluster center's values and producing coincident or close clusters. To settle the former problem of PCM, we adopt a swam-based global optimization method which can be provided the optimal initial cluster centers. Furthermore, to settle the latter problem of PCM, we design an adaptive thresholding model based on the optimized cluster centers that yields preliminary clustered and un-clustered dataset. The preliminary clustered dataset plays a role of preventing coincident or close clusters and the un-clustered dataset is lastly clustered by PCM. From the experiment, the proposed method obtains a better performance than other PCM algorithms on a simulated magnetic resonance(MR) brain image dataset which is corrupted by various noises and bias-fields.