• Title/Summary/Keyword: Image Clustering

Search Result 601, Processing Time 0.042 seconds

카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion (Camera and LiDAR Sensor Fusion for Improving Object Detection)

  • 이종서;김만규;김학일
    • 방송공학회논문지
    • /
    • 제24권4호
    • /
    • pp.580-591
    • /
    • 2019
  • 본 논문의 목적은 자율주행을 위하여 카메라와 라이다를 이용하여 객체를 검출하고 각 센서에서 검출된 객체를 late fusion 방식으로 융합을 하여 성능을 향상하는 것을 목적으로 한다. 카메라를 이용한 객체 검출은 one-stage 검출인 YOLOv3을, 검출된 객체의 거리 추정은 perspective matrix를, 라이다의 객체 검출은 K-means 군집화 기반 객체 검출을 각각 이용하였다. 카메라와 라이다 calibration은 PnP-RANSAC을 이용하여 회전, 변환 행렬을 구하였다. 센서 융합은 라이다에서 검출된 객체를 이미지 평면에 옮겨 Intersection over union(IoU)을 계산하고, 카메라에서 검출된 객체를 월드 좌표에 옮겨 거리, 각도를 계산하여 IoU, 거리 그리고 각도 세 가지 속성을 로지스틱 회귀를 이용하여 융합을 하였다. 융합을 통하여 각 센서에서 검출되지 않은 객체를 보완해주어 성능이 약 5% 증가하였다.

영상 감시시스템을 위한 SOM 기반 실시간 변화 감지 기법 (Real-Time Change Detection Architecture Based on SOM for Video Surveillance Systems)

  • 김종원;조정호
    • 한국정보기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.109-117
    • /
    • 2019
  • 현대 사회는 불특정 다수를 대상으로 자행되는 각종 사고와 범죄 위협으로 인하여 사회 전반에 걸쳐 개인의 보안 의식이 증가되며 다양한 감시 기법이 활발히 연구되고 있으나, 여전히 단순 부주의 또는 오작동으로 인한 강인성 저하가 발생하여 보다 높은 신뢰성을 갖는 감시 기법이 요구된다. 이에, 본 논문에서는 다양한 환경 및 동·정적 변화 감지에서의 낮은 강인성을 보완하고 비용 효율성 문제를 해결하기 위한 실시간 변화감지 기법을 제안한다. 변화 감지 구현을 위해 데이터 군집화 기법으로 응용되고 있는 자기 조직화 신경망을 활용하였으며, 실내 사무실 환경에서의 모의실험을 통해 기존 영상 감시 시스템에서 응용되는 감지 기법 대비 뛰어난 잡음 강인성과 이상 감지 판단의 우수성을 확인할 수 있었다.

자기조직화지도를 통한 아파트 가격의 패턴 분석 (Pattern Analysis of Apartment Price Using Self-Organization Map)

  • 이지영;유재필
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.27-33
    • /
    • 2021
  • 최근 인공지능, 딥러닝, 빅데이터 등 4차 산업의 핵심 분야에 대한 관심이 커지면서 기존의 의사결정 문제를 전통적인 방법론의 한계점을 최소화하는 과학적 접근 방식이 대두되고 있다. 특히 이런 과학적인 기법들은 주로 금융 상품의 방향성을 예측하는데 사용되는데 본 연구에서는 사회적으로 관심이 높은 아파트 가격의 요인을 자기조직화지도를 통해 분석하고자 한다. 이를 위해 아파트 가격의 실질 가격을 추출하고 아파트 가격에 영향을 주는 총 16개의 입력 변수를 선정한다. 실험 기간은 1986년 1월부터 2021년 6월까지이며 아파트 가격의 상승 및 횡보 구간을 나눠 각 구간 별 변수들의 특징을 살펴본 결과, 상승 구간과 횡보 구간의 입력 변수의 통계적 성향이 뚜렷하게 구분되는 것을 알 수 있었다. 더불어 U1~U3 구간이 N1~N3 구간에 비해서 변수들의 표준편차가 상대적으로 크게 나왔다. 본 연구는 중장기적으로 상승과 하락이라는 큰 주기를 갖고 있는 부동산에 대해서 현재 시점의 현황을 정량적으로 분석한 것에 의미가 있으며 향후 이미지 학습을 통해 미래 방향성을 예측하는 연구에 도움이 되기를 기대한다.

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.191-199
    • /
    • 2023
  • 본 논문에서는 자율협력주행을 위한 인프라로써 제작된 5가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하는 방법을 제안한다. 자율주행차량에 장착된 영상 취득 센서의 경우에는 기후 환경 및 카메라의 특성 등으로 인해 취득 데이터의 일관성이 낮기 때문에 이를 보완하기 위해서 라이다 센서를 적용했다. 또한, 라이다로 기존의 다른 시설물들과의 구별을 용이하게 하기 위해서 고휘도 반사지를 시설물의 용도별로 디자인하여 부착했다. 이렇게 개발된 5가지 센서 전용 시설물들과 데이터 취득 시스템으로 취득한 포인트 클라우드 데이터로부터 측정 거리별 시설물의 특징을 추출하는 방법으로 해당 시설물에 부착된 고휘도 반사지의 평균 반사강도을 기준으로 특징 포인트들을 추출하여 DBSCAN 방법으로 군집화한 후 해당 포인트들을 투영법으로 2차원 좌표로 변경했다. 거리별 해당 시설물의 특징은 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도로 구성되며, 추후 개발될 시설물 인식을 위한 모형의 학습데이터로 활용될 예정이다.

Google Earth Engine의 Sentienl-1 SAR를 활용한 남극 빙설 면적 변화 모니터링 (Assessment of Antarctic Ice Tongue Areas Using Sentinel-1 SAR on Google Earth Engine)

  • 이나미;김승희;김현철
    • 대한원격탐사학회지
    • /
    • 제40권3호
    • /
    • pp.285-293
    • /
    • 2024
  • 본 연구는 Google Earth Engine을 활용하여 Sentinel-1 Synthetic Aperture Radar 영상을 통해 남극 Campbell Glacier Tongue (CGT)와 Drygalski Ice Tongue (DIT)의 면적 변화를 2016년부터 2024년까지 모니터링하였다. Otsu 기법과 Simple Non-Iterative Clustering (SNIC) 클러스터링 기법을 사용하여 빙설과 해양을 구분하고 월평균 영상을 통해 빙설 탐지 오류를 줄였다. 분석 결과 CGT는 주기적인 붕괴로 인하여 약 26% 감소하였고 DIT는 전반적으로 증가하다가 최근 급격한 감소를 보였다. Sentinel-2 광학 영상과 비교한 결과 높은 탐지 정확성을 보여 제안된 방법의 신뢰성을 입증하였으며, 본 연구는 남극 빙설과 빙붕의 장기 모니터링에 기여할 것으로 기대된다.

(2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계 (Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm)

  • 오성권;진용탁
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.195-201
    • /
    • 2014
  • 본 연구에서는 $(2D)^2PCA$ 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템을 설계하였다. 기존의 1차원 PCA는 행과 열의 곱으로 표현한 이미지의 차원을 축소한다. 하지만 $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis)는 이미지의 행과 열에서 각각 차원축소를 수행한다. 그 다음 제안된 지능형 패턴분류기로 축소된 이미지를 사용하여 성능을 평가한다. (pRBFNNs)로 성능 평가를 한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세가지의 기능적 모듈로 구성되어 있고 조건는 퍼지 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 RBFNNs의 연결가중치로 일차 선형식으로 표현한다. 또한 차분진화 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다. 실험 평가를 위해 IC&CI 연구실 데이터를 추가하여 실험하였다.

중심신경망을 이용한 3차원 선소의 군집화에 의한 위성영상의 3차원 건물모델 재구성 (Reconstruction of 3D Building Model from Satellite Imagery Based on the Grouping of 3D Line Segments Using Centroid Neural Network)

  • 우동민;박동철;호하이느웬;김태현
    • 대한원격탐사학회지
    • /
    • 제27권2호
    • /
    • pp.121-130
    • /
    • 2011
  • 본 논문에서는 중심신경망을 이용하여 위성영상으로부터 직사각형 형태의 3차원 건물의 지붕모델을 재구성하는 방법을 연구하였다. 제안된 3차원 지붕모델 재구성 기법의 핵심은 3차원 선소의 군집화에 있다. 이를 위해 한 쌍의 스테레오 영상으로부터 구해진 DEM (Digital Elevation Map) 데이터와 2차원 선소에 의해서 3자원 선소를 발생하였다. 제안된 군집화 과정은 중심신경망을 이용한 방법에 의해 수행되며, 2단계로 구성된다. 첫 번째 단계에서는 선소 추출과정에서 끊어지거나, 중복된 3차원 선소를 건물을 이루는 주된 선소로 군집화하고, 두 번째 단계에서는 건물을 구성하는 주된 선소를 구하기 위해 서로 평행인 선소들의 군으로 군집화를 수행한다. 이 군집화 결과를 최종 클러스터링 과정을 통해 직사각형 형태의 지붕모델로 재구성하게 된다. 제안된 방법이 대전지역의 고해상도 IKONOS 위성영상에 의해 실험되었다. 재구성된 건물모델이 원래 건물의 위치와 형태를 대체로 정확히 반영하여, 본 논문에서 제안된 기법을 고해상도 위성영상에 적용하여 도시지역의 건물모델을 구축하는데 효과적으로 사용될 수 있음이 입증되었다.

계층적 특징 결합 및 검증을 이용한 자연이미지에서의 장면 텍스트 추출 (Scene Text Extraction in Natural Images using Hierarchical Feature Combination and Verification)

  • 최영우;김길천;송영자;배경숙;조연희;노명철;이성환;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.420-438
    • /
    • 2004
  • 이미지에 인위적 또는 자연적으로 포함된 텍스트는 이미지의 내용을 함축적이고 구체적으로 표현하는 중요한 정의이다. 이러한 정보를 실시간에 추출하여 정확히 인식할 수 있다면 다양한 분야에서 활용될 수 있다. 본 논문에서는 자연이미지에 포함된 장면 텍스트를 추출하는 방법으로서 텍스트의 색 연속성, 자기 변화 및 색 변화와 같은 낮은 수준의 이미지 특징으로 텍스트 후보 영역을 찾고, 다해상도 (Multi-resolution) 웨이블릿(Wavelet) 변환을 이용하여 높은 수준의 텍스트 특징인 획의 구성 여부로 검증하는 계층적인 구조를 제안한다. 색 연속성 특징은 대부분의 텍스트는 동일한 색으로 구성된다는 특징을 이용하는 것이고, 밝기 변화 특징은 텍스트 영역은 주변과의 밝기 변화가 존재하며 에지 밀도가 높은 특징을 이용한다. 또한, 색 변화 특징은 텍스트 영역은 주변 배경과의 색 변화가 존재하며, 밝기 변화보다 민감한 색 분산 값으로 표현할 수 있다는 장점을 이용한다. 높은 수준의 텍스트 특징으로서 다해상도 웨이블릿 변환을 이용하여 텍스트 획의 방향성 정보를 추출하고, 추출된 정보를 SVM(Support Vector Machine) 분류기로 검증하여 최종 영역을 확정한다. 제안한 방법을 다양한 종류의 이미지에 적용한 결과 배경이 복잡해도 비교적 안정적으로 텍스트 영역을 추출하는 것을 확인할 수 있었다.

Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템 (An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION)

  • 김종호;김상균;황구선;안상호;강병두
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.87-98
    • /
    • 2011
  • 동영상에서의 움직이는 객체 검출과 추적은 객체 식별, 상황인식, 지능형 영상 감시 시스템 등 많은 시각 기반 응용 시스템에서 기본적이고 필수적인 전처리 작업이다. 본 논문에서는 배경과 조명이 실시간으로 변화하는 상황에서 움직이는 객체를 빠르고 정확하게 추출하고 움직이는 객체가 다른 물체에 가려지는 경우에도 강인하게 객체를 추적하는 방법을 제안한다. 객체의 효과적인 검출을 위해서 효과적인 고유 공간과 Fuzzy C-means(FCM) 를 결합하여 사용하고 검출된 객체를 강인하게 추적하기 위해 Conditional Density Propagation (CONDENSATION) 알고리즘을 사용한다. 먼저 Principal Component Analysis(PCA)를 이용하여 배경 영상에서 수집한 학습데이터를 주성분(Principal component)으로 선형변환 한다. 주성분들의 고유 특성에 대한 해석을 통하여 객체와 배경에 대하여 판별 능력이 우수한 주성분을 선별하여 고유 배경을 구성한다. 다음으로 이전단계에서 구성된 고유 벡터와 입력 영상을 결합한 연산 결과를 FCM의 입력 값으로 사용해서 객체를 검출한다. 최종적으로 검출된 객체의 좌표를 CONDENSATION의 입력으로 사용해서 객체를 추적한다. 고정된 카메라에서 조명변화와 배경변화에 적용 가능한 시스템을 구현하기 위해 고정된 카메라에서 움직이는 다양한 객체가 포함된 영상을 수집하여 학습데이터로 구성하여 사용하였다. 실험 결과에 따르면 제안하는 방법이 조명변화와 배경변화 그리고 객체의 부분적 움직임에 모두 강인하게 객체를 검출하고 다른 물체나 배경에 의해 객체가 일부 가려지더라도 객체를 추적함을 보여준다.

병리특이적 형태분석 기법을 이용한 HRCT 영상에서의 새로운 봉와양폐 자동 분할 방법 (A Novel Method for Automated Honeycomb Segmentation in HRCT Using Pathology-specific Morphological Analysis)

  • 김영재;김태윤;이승현;김광기;김종효
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권2호
    • /
    • pp.109-114
    • /
    • 2012
  • 봉와양폐(Honeycomb)는 직경 2~10mm 정도의 크기가 같지 않은 낭포(Cyst)가 경계가 명확한 섬유질(Fibrosis)로 이루어진 벽에 둘러싸여 밀집된 형태로 이루어져 있다. 봉와양폐가 발견될 경우 급성악화의 발생 빈도가 높으며 따라서 봉와양폐의 관찰 여부와 측정은 임상에서 중요한 지표가 된다. 따라서 본 논문에서는 봉와양폐 영역의 정량적 측정을 위하여 봉와양폐의 특징을 이용한 형태학적 기법과 군집성 평가 기법을 통해 자동 구획 방법을 제안하였다. 첫 번째로 영상의 잡음을 제거하기 위하여 가우시안 필터링을 적용하고, 모폴로지 기법 중 팽창 기법을 이용하여 폐 영역을 구획하였다. 두번째로, 주변 8방향 검사를 통해 봉와양폐를 구성하는 낭포의 후보군을 찾고, 영역 확장과 외곽선 검사를 통해 비 낭포들을 제거하였다. 마지막으로 군집화 검사를 통해 최종적으로 봉와양폐를 구획하였다. 제안한 방법은 80장의 고해상도 컴퓨터 단층촬영 영상에서 실험한 결과, 89.4%의 민감도와, 72.2%의 양성 예측도를 보였다.