• 제목/요약/키워드: Image Classifier

검색결과 488건 처리시간 0.024초

프랙탈 영상 부호화용 블럭 분류기 (Block Classifier for Fractal Image Coding)

  • 박경배;정우석;김정일;정근원;이광배;김현욱
    • 한국정보처리학회논문지
    • /
    • 제2권5호
    • /
    • pp.691-700
    • /
    • 1995
  • 프레탈을 이용한 대부분의 영상 부호화하는 최적의 유사 변환점을 얻기 위해서 방대한 비교 연산이 필요하여 장시간의 부호화 시간이 요구되는 문제점이 있다. 이러 한 문제는 블럭특성에 적합한 블럭 분류기를 설계함으로써 해결할 수 있다. 일반적으 로 공간 영역에서 보다는 주파수 영역에서 좀더 정확하고 다양한 블럭의 형태를 예측 할 수 있다. 본 논문에서는 DCT특성을 이용하여 블럭의 형태를 예측할 수 있는 블럭 분류기를 제안하였다. 이 분류기는 프랙탈 특징과 부합하여 부호와 시간을 줄임과 동 시에 복원된 영상의 화질을 높이는 장점이 있다. 주파수 영역에서의 AC 계수의 크기는 다양한 블럭 형태를 예측 가능하게 함으로써 최적의 축소 변환점을 얻기 위한 도메인 블럭과 레인지 블럭간에 비교 연산을 줄일 수 있다. 특히 DCT 각 계수의 부호값은 프 랙탈 적용을 위한 8가지 변환에 대해 불필요한 변환을 생략함으로써 2가지 변환만으로 도 축소 변환점을 찾는 장점을 나타낸다.

  • PDF

Detection of Rice Disease Using Bayes' Classifier and Minimum Distance Classifier

  • Sharma, Vikas;Mir, Aftab Ahmad;Sarwr, Abid
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.17-24
    • /
    • 2020
  • Rice (Oryza Sativa) is an important source of food for the people of our country, even though of world also .It is also considered as the staple food of our country and we know agriculture is the main source country's economy, hence the crop of Rice plays a vital role over it. For increasing the growth and production of rice crop, ground-breaking technique for the detection of any type of disease occurring in rice can be detected and categorization of rice crop diseases has been proposed in this paper. In this research paper, we perform comparison between two classifiers namely MDC and Bayes' classifiers Survey over different digital image processing techniques has been done for the detection of disease in rice crops. The proposed technique involves the samples of 200 digital images of diseased rice leaf images of five different types of rice crop diseases. The overall accuracy that we achieved by using Bayes' Classifiers and MDC are 69.358 percent and 81.06 percent respectively.

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF

광강도차를 이용한 냉연강판 표면결함 검출 (Surface Flaw Detection of Cold-Rolled Steel Strips using Intensity Gradient)

  • 공선곤
    • 한국지능시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.75-82
    • /
    • 2000
  • 이논문에서는 영상처리 기법과 신경회로망 분류기를 이용하여 냉연강판의 표면에 나타나는 결함을 검출하는 기법을 제안한다. 냉연강판 표면의 입력영상을 웨이블렛 변환하여 영상신호 데이터량을 감소시키고 영상신호의 저주파수 영역에 해당하는 부분영상으로부터 구한 co-occurrence 행렬을 이용하여 주된 특징들을 추출한 후 신경회로망 분류기를 이용하여 표면결함을 분류하는 과정을 밟는다 현장에서 직접입수한 실제 냉연강판 표면결함 영상에 대하여 결함의 검출 및 분류기법을 제시하고 실험을 통해 기존의 백터양자화 기법과 비교하여 우수한 성능을 보임을 입증하였다.

  • PDF

The study of Combination Texture Information and Knowledge Base Classification for Urban Paddy Area Extraction-Using High Resolution Satellite Image

  • Chou, Tien-Yin;Lei, Tsu-Chiang;Chen, Yan-Hung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.807-810
    • /
    • 2003
  • This research uses high-resolution satellite images as a source of collecting farmland information. For effectively extract the paddy area, we use texture information and different classify methods to assist the satellite image classification. First, using maximum likelihood classifier to extract paddy information from images. The results show that User Accuracy and Procedure Accuracy of the paddy area can increase from 80.60% to 95.45% and 84.38% to 95.45%. Second, establishing a paddy Knowledge Base and using Knowledge Base Classifier to extract paddy area, and result shows the User Accuracy and Producer Accuracy to be 92.16% and 90.06%. Finally, The result shows we can effectively contribute to the paddy field information extraction from high-resolution satellite images.

  • PDF

동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출 (Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix)

  • 박태희;문용호;엄일규
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.

An Object Oriented Approach for Multi-Channel and Multi-Polarization NASA/JPL POLSAR Image Classification

  • Tsay, Jaan-Rong;Lin, Chia-Chu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.363-365
    • /
    • 2003
  • This paper presents an object oriented approach(OOA) for classification of multi-channel and multi-polarization NASA/JPL POLSAR images. Some test results in Taiwan are also given and analyzed. It is concluded that this approach can utilize as more information of both low- and high-levels involved in all images as possible for image classification and thus provides a better classification accuracy. For instance, the OOA has a better overall classification accuracy(98.27%) than the nearest-neighbor classifier(91.31%) and minimum-distance classifier(80.52%).

  • PDF

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.

퍼지 분류가 시스템을 이용한 영상의 에지 검출 규칙 학습 (Learning of Rules for Edge Detection of Image using Fuzzy Classifier System)

  • 정치선;반창봉;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.252-259
    • /
    • 2000
  • 본 논문에서는 영상의 에지 검출을 수행하기 위한 퍼지 규칙을 학습하는 퍼지 분류자 시스템을 제안한다. 퍼지 분류자 시스템은 기계학습의 방법을 퍼지 논리의 개념에 적용한 것이다. 즉 분류자의 조건부와 행동부는 퍼지 규칙에서위 전건부와 후건부와 같은 것이 된다 퍼지 규칙을 진화에 의해 획득하는 방법론으로는 크게 미시간 접근법과 피츠 접근법이 있으며, 본 논문에서는 미시간 방법의 퍼지 분류자 시스템을 사용한다. 미시간 접근방법은 하나의 퍼지 IF-THEN 규칙이 진화연산의 직접적인 진화 대상이 되는 하나의 개체로 코드화된다. 또한 퍼지 분류자 시스템은 유전 알고리즘을 사용하여 새로운 규칙을 생성하거나 규칙을 수정하여 시스템의 성능을 향상시킨다. 제안된 방법은 영상 처리와 컴퓨터 비전 분야에서 인식과 구분ㅇ르 수행하기 위한 전처리 단계에 해당하는 에지 검출에 적용하여 그 유효성을 검증한다. 즉, 영상엣 한 픽셀이 이웃하는 픽셀들의 평균 그렝 레벨의 차리를 퍼지 집합으로 표현하고 퍼지 IF-THEN 규칙을 사용하여 에지를 검출하고, 이것을 Sobel 에지 검출방법으로 얻어진 결과와 비교하여 에지 검출에 사용된 규칙의 유용성을 판단한다.

  • PDF

Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색 (Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier)

  • 손정은;고병철;남재열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권4호
    • /
    • pp.273-280
    • /
    • 2013
  • 본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.