• 제목/요약/키워드: Illumination normalization

검색결과 46건 처리시간 0.023초

조명 정규화 및 하이브리드 분류기를 이용한 계량기 숫자 인식 (Meter Numeric Character Recognition Using Illumination Normalization and Hybrid Classifier)

  • 오한글;조성원;정선태
    • 한국지능시스템학회논문지
    • /
    • 제24권1호
    • /
    • pp.71-77
    • /
    • 2014
  • 본 논문에서는 저조도 및 음영이 생기는 조명 환경하에서 성능이 개선된 계량기 숫자 인식 방법을 제안한다. 저조도 및 음영 문제를 해결하기 위해 LN(Local Normalization) 처리 기법을 이용한 조명 정규화를 수행한 후, 계량기 숫자 영역 검출과 3단계 계량기 숫자 분할이 이루어진다. 마지막으로 분할된 숫자 데이터를 분류하기 위한 하이브리드 숫자 분류기가 적용된다. 제안된 하이브리드 숫자 분류기는 역전파 신경망과 템플레이트 매칭의 연속 결합으로 이루어지고, 계량기 숫자 분류에 보다 강인한 휴리스틱 규칙에 의해 최종적으로 숫자를 분류한다. 저조도 및 음영 조명 환경하의 다양한 계량기 종류에 대해 직접 촬영하여 자체 제작한 계량기 이미지 데이터베이스에 기반한 실험을 통해 본 논문에서 제안한 숫자 인식 방법을 평가하고, 제안된 계량기 숫자 인식 방법이 효과적으로 잘 동작함을 확인하였다.

A Correction Approach to Bidirectional Effects of EO-1 Hyperion Data for Forest Classification

  • Park, Seung-Hwan;Kim, Choen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1470-1472
    • /
    • 2003
  • Hyperion, as hyperspectral data, is carried on NASA’s EO-1 satellite, can be used in more subtle discrimination on forest cover, with 224 band in 360 ?2580 nm (10nm interval). In this study, Hyperion image is used to investigate the effects of topography on the classification of forest cover, and to assess whether the topographic correction improves the discrimination of species units for practical forest mapping. A publicly available Digital Elevation Model (DEM), at a scale of 1:25,000, is used to model the radiance variation on forest, considering MSR(Mean Spectral Ratio) on antithesis aspects. Hyperion, as hyperspectral data, is corrected on a pixel-by-pixel basis to normalize the scene to a uniform solar illumination and viewing geometry. As a result, the approach on topographic effect normalization in hyperspectral data can effectively reduce the variation in detected radiance due to changes in forest illumination, progress the classification of forest cover.

  • PDF

조명 정규화를 통한 정맥인식 성능 향상 기법 (A Method for Improving Vein Recognition Performance by Illumination Normalization)

  • 이의철
    • 한국정보통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.423-430
    • /
    • 2013
  • 최근 손등이나 손바닥, 손가락의 정맥 혈관 패턴정보를 이용하여 개인을 인증하는 기술은 훼손, 복제 및 위조가 불가능하다는 장점으로 인해 연구가 활발하게 진행 중이다. 정맥영상은 피부층과 내부 골격등에 의한 빛의 산란 및 불균일한 내부 조직 때문에 정맥 영역이 뚜렷하게 나타나지 않아, 영상처리 방법을 통해 정맥 영역을 정확하게 분리하는 것이 어렵다. 특히 한 장의 영상에서도 밝기가 균일하지 않아서 지역 영역 단위로 다른 이진 임계치를 사용함으로 인해 처리시간이 오래 걸리고 혈관의 불연속면이 발생한다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 조명 정규화 기반의 고속 정맥 영역 추출 방법을 제안한다. 본 연구는 기존의 방법에 비해 다음과 같은 장점을 가지고 있다. 첫째, 정맥영상의 불균일한 조명을 제거하기 위해 저역통과필터를 통해 조명 성분을 취득하고 이를 통해 조명성분이 균일한 영상을 얻었다. 둘째, 조명 정규화 영상으로부터 단일 임계치를 통해 얻어진 이진 영상의 처리를 통해 혈관 경로를 추출함으로써, 처리시간을 단축하였다. 실험을 통해 기존 방법들에 비해 혈관 영역 추출 정확도가 상승하고, 처리속도가 단축된 결과를 얻을 수 있었다.

Poly Phase Filter 기반의 영상 스케일러를 이용한 개선 된 정맥 영역 추출 방법 (Enhanced Vein Detection Method by Using Image Scaler Based on Poly Phase Filter)

  • 김희경;이승민;강봉순
    • 한국정보통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.734-739
    • /
    • 2018
  • 생체 인식 방식 중 하나인 지문 인식과 홍채 인식 등은 태양광과 같은 외부 요소에 쉽게 영향을 받는다. 따라서 최근에는 생체 내부의 특징을 이용하는 방법으로 지정맥 인식을 이용하고 있다. 정확한 정맥 인식을 위해서는 정맥 영역과 배경 영역을 확실하게 분리하는 것이 중요하다. 하지만 입력 영상에 포함 된 불균일한 조명 성분의 영향으로 정맥 영역과 배경 영역을 분리하는 것이 어려웠기 때문에 입력 영상의 조명 성분을 정규화 시킨 후 정맥 영역과 배경 영역을 분리 할 수 있는 방법이 제안되었다. 본 논문에서는 기존의 조명 정규화 방법을 바탕으로 영상 스트레칭 과정이 포함 된 영상의 전처리 단계와 이진화, 레이블링 방법을 개선하여 기존의 정맥 인식 기법에 비해 더 나은 질적 개선을 이루고 처리 속도를 향상 시킬 수 있는 방법을 제안한다.

환경에 강인한 얼굴인식을 위한 CMSB-plane과 Entropy 기반의 적응 평활화 기법 (Adaptive Smoothing Based on Bit-Plane and Entropy for Robust Face Recognition)

  • 이수영;박석래;박영경;김중규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.869-870
    • /
    • 2008
  • Illumination variation is the most significant factor affecting face recognition rate. In this paper, we propose adaptive smoothing based on combined most significant bit (CMSB) - plane and local entropy for robust face recognition in varying illumination. Illumination normalization is achieved based on Retinex method. The proposed method has been evaluated based on the CMU PIE database by using Principle Component Analysis (PCA).

  • PDF

조명 변화에 강인한 얼굴 검출을 위한 좌우대칭 평균화 기법 (A Bilateral Symmetry Average Method for Robust Face Detection against Illumination Variation)

  • 조치영;김수환
    • 게임&엔터테인먼트 논문지
    • /
    • 제2권2호
    • /
    • pp.45-50
    • /
    • 2006
  • 형판 정합 기반의 얼굴 검출 시스템에서 획득된 이미지에 대한 명암 정규화 및 영상 보정을 위해 히스토그램 평활화나 로그 변환 등을 사용한다. 이 방법은 조명 변화에 의해 발생한 이미지의 부분 명암 왜곡에는 효과적이지 못하다는 것이 알려져 있다. 본 논문에서는 부분적 명암 왜곡에 매우 효과적인 영상 보정을 수행하는 좌우대칭 평균화 기법을 제시한다. 실험 결과 이 기법은 기존의 방식보다 매우 효율적인 검출 성능을 보일 뿐만 아니라 얼굴 후보의 개수도 현저하게 감소하는 것으로 나타났다.

  • PDF

웃음 치료 훈련을 위한 웃음 표정 인식 시스템 개발 (Development of a Recognition System of Smile Facial Expression for Smile Treatment Training)

  • 이옥걸;강선경;김영운;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.47-55
    • /
    • 2010
  • 본 논문은 실시간 카메라 영상으로부터 얼굴을 검출하고 얼굴 표정을 인식하여 웃음 치료훈련을 할 수 있는 시스템을 제안한다. 제안된 시스템은 카메라 영상으로부터 Haar-like 특징을 이용하여 얼굴 후보 영역을 검출한 다음, SVM분류기를 이용하여 얼굴 후보 영역이 얼굴 영상인지 아닌지를 검증한다. 그 다음에는 검출된 얼굴 영상에 대해, 조명의 영향을 최소화하기 위한 방법으로 히스토그램 매칭을 이용한 조명 정규화를 수행한다. 표정 인식 단계에서는 PCA를 사용하여 얼굴 특징 벡터를 획득한 후 다층퍼셉트론 인공신경망을 이용해 실시간으로 웃음표정을 인식하였다. 본 논문에서 개발된 시스템은 실시간으로 사용자의 웃음 표정을 인식하여 웃음 양을 화면에 표시해 줌으로써 사용자 스스로 웃음 훈련을 할 수 있게 해 준다. 실험 결과에 따르면, 본 논문에서 제안한 방법은 SVM 분류기를 통한 얼굴 후보 영역 검증과 히스토그램 매칭을 이용한 조명정규화를 이용하여 웃음 표정 인식률을 향상시켰다.

조명 변화에 강인한 얼굴 검출을 위한 좌우대칭 평균화와 단순회귀분석 보정기법 (Bilateral Symmetry Averaging and Simple Regression Analysis for Robust Face Detection Against Illumination Variation)

  • 조치영;김수환
    • 한국콘텐츠학회논문지
    • /
    • 제6권12호
    • /
    • pp.21-28
    • /
    • 2006
  • 형판 정합 기반의 얼굴 검출 시스템에서 획득된 이미지에 대한 명암 정규화 및 영상 보정을 위해 보통 히스토그램 평활화 등을 사용한다. 이 방법은 조명 변화에 의해 발생한 이미지의 부분 명암 왜곡에는 효과적이지 못하다는 것이 알려져 있다. 본 논문에서는 다양한 방향의 조명에 의한 명암 왜곡을 효과적으로 보정하는 전처리 기법을 제시한다. 이 기법은 얼굴의 좌우대칭성을 이용한 좌우대칭 평균화와 단순회귀분석을 이용한 세로 방향 명암 보정을 결합한 것이다. 실험 결과 이 기법은 기존의 방식보다 높은 검출성능을 보일 뿐만 아니라 얼굴의 후보 개수도 현저하게 감소하는 것으로 나타났다.

  • PDF

스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션 개발 (Development of Recognition Application of Facial Expression for Laughter Theraphy on Smartphone)

  • 강선경;이옥걸;송원창;김영운;정성태
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.494-503
    • /
    • 2011
  • 본 논문에서는 스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션을 제안한다. 제안된 방법에서는 스마트폰의 전면 카메라 영상으로부터 AdaBoost 얼굴 검출 알고리즘을 이용하여 얼굴을 검출한다. 얼굴을 검출한 다음에는 얼굴 영상으로부터 입술 영역을 검출한다. 그 다음 프레임부터는 얼굴을 검출하지 않고 이전 프레임에서 검출된 입술영역을 3단계 블록 매칭 기법을 이용하여 추적한다. 카메라와 얼굴 사이의 거리에 따라 입술 영역의 크기가 달라지므로, 입술 영역을 구한 다음에는 고정된 크기로 정규화한다. 그리고 주변 조명 상태에 따라 영상이 달라지므로, 본 논문에서는 히스토그램 매칭과 좌우대칭을 결합하는 조명 정규화 알고리즘을 이용하여 조명 보정 전처리를 함으로써 조명에 의한 영향을 줄일 수 있도록 하였다. 그 다음에는 검출된 입술 영상에 주성분 분석을 적용하여 특징 벡터를 추출하고 다층퍼셉트론 인공신경망을 이용하여 실시간으로 웃음 표정을 인식한다. 스마트폰을 이용하여 실험한 결과, 제안된 방법은 초당 16.7프레임을 처리할 수 있어서 실시간으로 동작 가능하였고 인식률 실험에서도 기존의 조명 정규화 방법보다 개선된 성능을 보였다.

크기 및 회전 불변 영역 특징을 이용한 이미지 유사성 검색 (Image Similarity Retrieval using an Scale and Rotation Invariant Region Feature)

  • 유승훈;김현수;이석룡;임명관;김덕환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권6호
    • /
    • pp.446-454
    • /
    • 2009
  • 다양한 영역 검출 및 형태 특징 추출 방법 중에서 MSER과 SIFT를 응용한 방법들이 컴퓨터비전 분야에 많이 사용된다. 하지만 기존의 SIFT를 이용한 특징 추출 방법은 자기 변화에 민감한 특성을 지니며, MSER 방법은 이미지의 크기 변화에 민감하고, 이미지 유사성 검색에 그대로 적용하기에는 어려움이 많다. 본 논문에서는 스케일 피라미드, MSER 그리고 어파인(affine) 정규화 과정 등을 이용한 영역 특징 서술자를 제안한다. 제안한 방법은 어파인 정규화 방법과 스케일 피라미드를 사용하기 때문에 이미지의 크기, 회전 및 자기 변화에 불변하다. 다양한 이미지들을 이용하여 실험하고, 실험 결과에서 제안한 방법이 SIFT, PCA-SIFT, CE-SIFT 그리고 SURF 방법에 비해서 각각 20%, 38%, 11%, 24% 이상 좋은 이미지 검색 성능을 보이고 있다.