• Title/Summary/Keyword: Illumination Normalization

Search Result 46, Processing Time 0.017 seconds

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Monitoring of Environmental Arsenic by Cultures of the Photosynthetic Bacterial Sensor Illuminated with a Near-Infrared Light Emitting Diode Array

  • Maeda, Isamu;Sakurai, Hirokazu;Yoshida, Kazuyuki;Siddiki, Mohammad Shohel Rana;Shimizu, Tokuo;Fukami, Motohiro;Ueda, Shunsaku
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1306-1311
    • /
    • 2011
  • Recombinant Rhodopseudomonas palustris, harboring the carotenoid-metabolizing gene crtI (CrtIBS), and whose color changes from greenish yellow to red in response to inorganic As(III), was cultured in transparent microplate wells illuminated with a light emitting diode (LED) array. The cells were seen to grow better under near-infrared light, when compared with cells illuminated with blue or green LEDs. The absorbance ratio of 525 to 425 nm after cultivation for 24 h, which reflects red carotenoid accumulation, increased with an increase in As(III) concentrations. The detection limit of cultures illuminated with near-infrared LED was 5 ${\mu}g$/l, which was equivalent to that of cultures in test tubes illuminated with an incandescent lamp. A near-infrared LED array, in combination with a microplate, enabled the simultaneous handling of multiple cultures, including CrtIBS and a control strain, for normalization by the illumination of those with equal photon flux densities. Thus, the introduction of a near-infrared LED array to the assay is advantageous for the monitoring of arsenic in natural water samples that may contain a number of unknown factors and, therefore, need normalization of the reporter event.

Contactless Biometric Using Thumb Image (엄지손가락 영상을 이용한 비접촉식 바이오인식)

  • Lim, Naeun;Han, Jae Hyun;Lee, Eui Chul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.671-676
    • /
    • 2016
  • Recently, according to the limelight of Fintech, simple payment using biometric at smartphone is widely used. In this paper, we propose a new contactless biometric method using thumb image without additional sensors unlike previous biometrics such as fingerprint, iris, and vein recognition. In our method, length, width, and skin texture information are used as features. For that, illumination normalization, skin region segmentation, size normalization and alignment procedures are sequentially performed from the captured thumb image. Then, correlation coefficient is calculated for similarity measurement. To analyze recognition accuracy, genuine and imposter matchings are performed. At result, we confirmed the FAR of 1.68% at the FRR of 1.55%. In here, because the distribution of imposter matching is almost normal distribution, our method has the advantage of low FAR. That is, because 0% FAR can be achieved at the FRR of 15%, the proposed method is enough to 1:1 matching for payment verification.

Facial Feature Extraction using Nasal Masks from 3D Face Image (코 형상 마스크를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • This paper proposes a new method for facial feature extraction, and the method could be used to normalize face images for 3D face recognition. 3D images are much less sensitive than intensity images at a source of illumination, so it is possible to recognize people individually. But input face images may have variable poses such as rotating, Panning, and tilting. If these variances ire not considered, incorrect features could be extracted. And then, face recognition system result in bad matching. So it is necessary to normalize an input image in size and orientation. It is general to use geometrical facial features such as nose, eyes, and mouth in face image normalization steps. In particular, nose is the most prominent feature in 3D face image. So this paper describes a nose feature extraction method using 3D nasal masks that are similar to real nasal shape.

A New Face Tracking and Recognition Method Adapted to the Environment (환경에 적응적인 얼굴 추적 및 인식 방법)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.385-394
    • /
    • 2009
  • Face tracking and recognition are difficult problems because the face is a non-rigid object. The main reasons for the failure to track and recognize the faces are the changes of a face pose and environmental illumination. To solve these problems, we propose a nonlinear manifold framework for the face pose and the face illumination normalization processing. Specifically, to track and recognize a face on the video that has various pose variations, we approximate a face pose density to single Gaussian density by PCA(Principle Component Analysis) using images sampled from training video sequences and then construct the GMM(Gaussian Mixture Model) for each person. To solve the illumination problem for the face tracking and recognition, we decompose the face images into the reflectance and the illuminance using the SSR(Single Scale Retinex) model. To obtain the normalized reflectance, the reflectance is rescaled by histogram equalization on the defined range. We newly approximate the illuminance by the trained manifold since the illuminance has almost variations by illumination. By combining these two features into our manifold framework, we derived the efficient face tracking and recognition results on indoor and outdoor video. To improve the video based tracking results, we update the weights of each face pose density at each frame by the tracking result at the previous frame using EM algorithm. Our experimental results show that our method is more efficient than other methods.

Model-Based Object Recognition using PCA & Improved k-Nearest Neighbor (PCA와 개선된 k-Nearest Neighbor를 이용한 모델 기반형 물체 인식)

  • Jung Byeong-Soo;Kim Byung-Gi
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.53-62
    • /
    • 2006
  • Object recognition techniques using principal component analysis are disposed to be decreased recognition rate when lighting change of image happens. The purpose of this thesis is to propose an object recognition technique using new PCA analysis method that discriminates an object in database even in the case that the variation of illumination in training images exists. And the object recognition algorithm proposed here represents more enhanced recognition rate using improved k-Nearest Neighbor. In this thesis, we proposed an object recognition algorithm which creates object space by pre-processing and being learned image using histogram equalization and median filter. By spreading histogram of test image using histogram equalization, the effect to change of illumination is reduced. This method is stronger to change of illumination than basic PCA method and normalization, and almost removes effect of illumination, therefore almost maintains constant good recognition rate. And, it compares ingredient projected test image into object space with distance of representative value and recognizes after representative value of each object in model image is made. Each model images is used in recognition unit about some continual input image using improved k-Nearest Neighbor in this thesis because existing method have many errors about distance calculation.

Uncooperative Person Recognition Based on Stochastic Information Updates and Environment Estimators

  • Kim, Hye-Jin;Kim, Dohyung;Lee, Jaeyeon;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.395-405
    • /
    • 2015
  • We address the problem of uncooperative person recognition through continuous monitoring. Multiple modalities, such as face, height, clothes color, and voice, can be used when attempting to recognize a person. In general, not all modalities are available for a given frame; furthermore, only some modalities will be useful as some frames in a video sequence are of a quality that is too low to be able to recognize a person. We propose a method that makes use of stochastic information updates of temporal modalities and environment estimators to improve person recognition performance. The environment estimators provide information on whether a given modality is reliable enough to be used in a particular instance; such indicators mean that we can easily identify and eliminate meaningless data, thus increasing the overall efficiency of the method. Our proposed method was tested using movie clips acquired under an unconstrained environment that included a wide variation of scale and rotation; illumination changes; uncontrolled distances from a camera to users (varying from 0.5 m to 5 m); and natural views of the human body with various types of noise. In this real and challenging scenario, our proposed method resulted in an outstanding performance.

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

The 1965 Korea-Japan Treaty on Basic Relations: A New Perspective on the Normalization Process (1965년 한일기본조약 : 국교정상화 요인에 대한 새로운 해석)

  • Moon, William J.;Oh, Hyun-Seung
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.43-58
    • /
    • 2007
  • With every Yasukuni Shrine visit by a Japanese Prime Minister, one can expect that the Korean government will jump up and down to condemn Japan. The blatant antagonism between the two powerhouses in Asia, lingering around more than sixty years after the end of the colonial period, is unmistakably more than interplay of their colonial history. It is an illumination of a largely unsettled post-colonial diplomacy that was executed in the name of economic advancement. The purpose of this paper is to shed lights on a largely ignored subject matter that unambiguously shaped the peculiar relationship between Korea and Japan.

Multi-classifier Decision-level Fusion for Face Recognition (다중 분류기의 판정단계 융합에 의한 얼굴인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • Face classification has wide applications in intelligent video surveillance, content retrieval, robot vision, and human-machine interface. Pose and expression changes, and arbitrary illumination are typical problems for face recognition. When the face is captured at a distance, the image quality is often degraded by blurring and noise corruption. This paper investigates the efficacy of multi-classifier decision level fusion for face classification based on the photon-counting linear discriminant analysis with two different cost functions: Euclidean distance and negative normalized correlation. Decision level fusion comprises three stages: cost normalization, cost validation, and fusion rules. First, the costs are normalized into the uniform range and then, candidate costs are selected during validation. Three fusion rules are employed: minimum, average, and majority-voting rules. In the experiments, unfocusing and motion blurs are rendered to simulate the effects of the long distance environments. It will be shown that the decision-level fusion scheme provides better results than the single classifier.