• Title/Summary/Keyword: Illumination Invariant Feature

Search Result 32, Processing Time 0.027 seconds

Robust-to-rotation Iris Recognition Using Local Gradient Orientation Histogram (국부적 그래디언트 방향 히스토그램을 이용한 회전에 강인한 홍채 인식)

  • Choi, Chang-Soo;Jun, Byoung-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.268-273
    • /
    • 2009
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. In this paper, we propose a novel method based on local gradient orientation histogram which is robust to variations in illumination and rotations of iris patterns. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.

Effective Marker Placement Method By De Bruijn Sequence for Corresponding Points Matching (드 브루인 수열을 이용한 효과적인 위치 인식 마커 구성)

  • Park, Gyeong-Mi;Kim, Sung-Hwan;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.9-20
    • /
    • 2012
  • In computer vision, it is very important to obtain reliable corresponding feature points. However, we know it is not easy to find the corresponding feature points exactly considering by scaling, lighting, viewpoints, etc. Lots of SIFT methods applies the invariant to image scale and rotation and change in illumination, which is due to the feature vector extracted from corners or edges of object. However, SIFT could not find feature points, if edges do not exist in the area when we extract feature points along edges. In this paper, we present a new placement method of marker to improve the performance of SIFT feature detection and matching between different view of an object or scene. The shape of the markers used in the proposed method is formed in a semicircle to detect dominant direction vector by SIFT algorithm depending on direction placement of marker. We applied De Bruijn sequence for the markers direction placement to improve the matching performance. The experimental results show that the proposed method is more accurate and effective comparing to the current method.

A Novel Method for Hand Posture Recognition Based on Depth Information Descriptor

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.763-774
    • /
    • 2015
  • Hand posture recognition has been a wide region of applications in Human Computer Interaction and Computer Vision for many years. The problem arises mainly due to the high dexterity of hand and self-occlusions created in the limited view of the camera or illumination variations. To remedy these problems, a hand posture recognition method using 3-D point cloud is proposed to explicitly utilize 3-D information from depth maps in this paper. Firstly, hand region is segmented by a set of depth threshold. Next, hand image normalization will be performed to ensure that the extracted feature descriptors are scale and rotation invariant. By robustly coding and pooling 3-D facets, the proposed descriptor can effectively represent the various hand postures. After that, SVM with Gaussian kernel function is used to address the issue of posture recognition. Experimental results based on posture dataset captured by Kinect sensor (from 1 to 10) demonstrate the effectiveness of the proposed approach and the average recognition rate of our method is over 96%.

Color Object Recognition and Real-Time Tracking using Neural Networks

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.135-135
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks that have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, we have a global search for entire image and then have tracking the object through local search when the object is recognized.

  • PDF

Real-Time Tracking for Moving Object using Neural Networks (신경망을 이용한 이동성 칼라 물체의 실시간 추적)

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2358-2361
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks which have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, this paper first has a global search of entire image and tracks the object through local search when the object is recognized.

  • PDF

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.

Traffic Object Tracking Based on an Adaptive Fusion Framework for Discriminative Attributes (차별적인 영상특징들에 적응 가능한 융합구조에 의한 도로상의 물체추적)

  • Kim Sam-Yong;Oh Se-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.1-9
    • /
    • 2006
  • Because most applications of vision-based object tracking demonstrate satisfactory operations only under very constrained environments that have simplifying assumptions or specific visual attributes, these approaches can't track target objects for the highly variable, unstructured, and dynamic environments like a traffic scene. An adaptive fusion framework is essential that takes advantage of the richness of visual information such as color, appearance shape and so on, especially at cluttered and dynamically changing scenes with partial occlusion[1]. This paper develops a particle filter based adaptive fusion framework and improves the robustness and adaptation of this framework by adding a new distinctive visual attribute, an image feature descriptor using SIFT (Scale Invariant Feature Transform)[2] and adding an automatic teaming scheme of the SIFT feature library according to viewpoint, illumination, and background change. The proposed algorithm is applied to track various traffic objects like vehicles, pedestrians, and bikes in a driver assistance system as an important component of the Intelligent Transportation System.

3D Object Recognition Using Appearance Model Space of Feature Point (특징점 Appearance Model Space를 이용한 3차원 물체 인식)

  • Joo, Seong Moon;Lee, Chil Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • 3D object recognition using only 2D images is a difficult work because each images are generated different to according to the view direction of cameras. Because SIFT algorithm defines the local features of the projected images, recognition result is particularly limited in case of input images with strong perspective transformation. In this paper, we propose the object recognition method that improves SIFT algorithm by using several sequential images captured from rotating 3D object around a rotation axis. We use the geometric relationship between adjacent images and merge several images into a generated feature space during recognizing object. To clarify effectiveness of the proposed algorithm, we keep constantly the camera position and illumination conditions. This method can recognize the appearance of 3D objects that previous approach can not recognize with usually SIFT algorithm.

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

A Grouping Method of Photographic Advertisement Information Based on the Efficient Combination of Features (특징의 효과적 병합에 의한 광고영상정보의 분류 기법)

  • Jeong, Jae-Kyong;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.66-77
    • /
    • 2011
  • We propose a framework for grouping photographic advertising images that employs a hierarchical indexing scheme based on efficient feature combinations. The study provides one specific application of effective tools for monitoring photographic advertising information through online and offline channels. Specifically, it develops a preprocessor for advertising image information tracking. We consider both global features that contain general information on the overall image and local features that are based on local image characteristics. The developed local features are invariant under image rotation and scale, the addition of noise, and change in illumination. Thus, they successfully achieve reliable matching between different views of a scene across affine transformations and exhibit high accuracy in the search for matched pairs of identical images. The method works with global features in advance to organize coarse clusters that consist of several image groups among the image data and then executes fine matching with local features within each cluster to construct elaborate clusters that are separated by identical image groups. In order to decrease the computational time, we apply a conventional clustering method to group images together that are similar in their global characteristics in order to overcome the drawback of excessive time for fine matching time by using local features between identical images.