• Title/Summary/Keyword: Ignition factor

Search Result 115, Processing Time 0.024 seconds

Experimental Study of the Effect of Secondary Air Injection on the Cold Start Total Hydrocarbon Emissions in a Spark Ignition Engine (스파크 점화기관에서 이차 공기 분사가 냉시동시 THC 배출량에 미치는 영향에 관한 실험적 연구)

  • 이승재;함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Engine emission regulations are becoming more stringent nowadays. In cold transient regime, about 80% THC is exhausted to the atmosphere in the first 200s (US FTP cycles). Accordingly, reducing emission levels in the cold period immediately after the engine start before the catalysts reach their working temperature will be an especially critical factor in meeting more stringent regulations in the future. In this study, the total hydrocarbon quantities are measured using a Fast FID with gasoline fuel for a 4-cylinde. Sl engine, including Secondary Air Injection (SAI) system. Commercial SAI device's direction is reverse to the exhaust flow. In this study, a swirl flow type SAI system which is positioned between the exhaust manifold and exhaust port, was developed. We compared the swirl type secondary air injection with a commercial secondary air injection of .everse flow. The swirl type SAI showed better results in reducing HC by 26% than the commercial flow type SAI of reverse flow which was caused by the better mixing between the exhaust gas and the secondary air.

A Study on Distillation Property of Automotive Gasoline and Diesel Fuel (자동차용 가솔린과 디젤 연료의 증류특성에 관한 연구)

  • Youm, Kwang-Wook;Kim, Sang-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.11-15
    • /
    • 2014
  • Currently, there are active researches being conducted on a new combustion technology that can reduce emission quantity while enhancing vehicle performance as well as Improving fuel quality. In a gasoline engine that uses petroleum, high volatility makes it easy to jump spark ignition and prevent knocking phenomenon that occurs inside an engine. In a diesel engine that uses diesel fuel, high volatility reduces combustion residues and toxic gas and is therefore good for protecting the environment. Therefore, for fuel used in a vehicle, volatility is an important factor that influences not only engine performance but also environmental protection. This research conducted a distillation experiment using gasoline and diesel fuel for vehicles produced by domestic oil companies. The test was conducted in accordance with the method of distillation experiment described in KS M ISO3405. In addition, it used the result of analysis from the experiment to examine visual distillation characteristics of each fuel and developed a formula based on distillation temperature.

A study of jet dispersion and jet-fire characteristics for safety distance of the hydrogen refueling station (수소충전소 안전거리 설정을 위한 수소제트 및 화염 특성 분석)

  • Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.74-80
    • /
    • 2019
  • Hydrogen refueling stations that use compressed hydrogen at high pressure provide safety distances between facilities in order to ensure safety. Most accidents occurring in hydrogen stations are accidental leaks. When a leak occurs, various types of ignition sources generate a jet flame. Therefore, the analysis of leaked gas diffusion and jet flame due to high pressure hydrogen leakage is one of the most important factor for setting the safety distance. In this study, the leakage accidents that occur in the hydrogen refueling station operated in high pressure environment are simulated for various leakage source sizes. The results of this study will be used as a reference for the future safety standards.

The Effect of the Excess Air Factor on the Emission Characteristics of the SI Engine Fueled with Gasoline-Ethanol and Hydrogen Enriched Gas (공기과잉률의 변화가 에탄올 및 수소농후가스 혼합연료 기관의 배기 특성에 미치는 영향)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.334-342
    • /
    • 2009
  • Trends in the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and has lower $CO_2$ emissions than gasoline, ethanol produced from biomass is expected to be used more frequently as an alternative fuel. It is recognized that for spark ignition (SI) engines, ethanol has the advantages of high octane number and high combustion speed. Due to the disadvantages of ethanol, it may cause extra wear and corrosion of electric fuel pumps. On-board hydrogen production out of ethanol is an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol are also examined. As a result, thermal efficiency increase compared to gasoline. Also, reductions in $CO_2$, NOx, and THC combustion products for ethanol vs. gasoline are described.

Engine Operation Characteristics of a Gasoline Direct Injection Engine (가솔린 직접 분사식 엔진의 운전특성에 관한 연구)

  • 조한승;박태용;박성진;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.54-66
    • /
    • 2000
  • A gasoline direct injection single cylinder engine has been developed to study operational characteristics for highly stratified conditions. Parameters related to design and experiment were also studied to understand the characteristics of combustion and emissions at some part load conditions. It was found that optimal timings between the end of fuel injection and spark ignition were existed for stable combustion under the stratified modes, In a low engine speed, fuel spray behavior around piston bowl was important for stable combustion. The in-cylinder air motion affecting fuel spray behavior was found to be a dominant factor at higher engine speed as fuel injection timing had to be advanced to secure enough time for fuel evaporation and mixing with surrounding air. As swirl ratio increased, spark timing could be advanced for stable combustion and a higher compression ratio could be used for improved fuel consumption and stable combustion at the stratified mode. It was also observed that electrode geometry and piston bowl shape played an important role for combustion and emission characteristics and some results were shown for comparison.

  • PDF

Development of a High-Efficient Magneric Ballast for Fluorescentlamps (고효율의 형광램프용 자기식 안정기의 개발)

  • 남택주;김희식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 1998
  • A new magnetic ballast was designed and developed to get high luminous efficiency. The core material of new magnetic ballast was G-9 and its shape of core is modified. The diameter of the coil was upgraded to 0.5[mm], and a new power-saving circuit was designed for the semiconductor ignition starter. The experimental results of the ballast showed reduction of the electric loss in the magnetic ballast about 1.7Watt (0.5[%]). The luminous efficiency was increased by 6.2 lm/Watt (7.6[%]) and the ballast efficiency factor(BEF) of 1.09(7.6[%]). The prototype was tested through national standard testing procedure. A high efficient energy-using equipment (the second grade in the efficiency of energy consumption) was certified. The saving power of 1.7[W] was shown by lighting appratus for fluorescent lamps. The result will be used for the high efficient magnetic ballast technology.nology.

  • PDF

Thermal Characteristics Of Car Interior Materials Using Cone Calorimeter (콘칼로리미터를 이용한 자동차 내장재의 열적 특성)

  • Kim, Young-Tak;Kim, Hae-Rim;Park, Young-Joo;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.557-563
    • /
    • 2009
  • FMVSS 302 수평 연소 시험법을 통과한 자동차 내장재의 열적 특성을 평가하기 위해서 콘칼로미터를 이용하여 시험을 수행하였다. 화재 위험과 관련된 착화시간(time to ignition), 열방출률(heat release rate), 질량감소율(specific mass loss rate), 감쇠계수(extinction coefficient) 그리고 연기요소(smoke factor)와 같은 여러 가지 요소들을 분석하였다. 최대 열방출률값은 시험편에 따라 232${\sim}$635kW/$m^2$으로 큰 편차를 보였으며, 연기요소 또한 99${\sim}$551MW/$m^2$로 큰 편차를 보였다. 보조매트의 최대 열방출률은 다른 시험편에 비해서 상대적으로 낮은 값을 보였지만, 총연기 발생이 다른 시험편에 비해서 상당히 높았다. 따라서 최대 열방출률과 총 연기발생을 함께 고려한 연기요소값은 상대적으로 다른 시험편에 비해서 높게 나타났다.

  • PDF

Optical and Thermodynamic Modeling of the Interaction Between Long-range High-power Laser and Energetic Materials

  • Kisung Park;Soonhwi Hwang;Hwanseok Yang;Chul Hyun;Jai-ick Yoh
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2024
  • This study is essential for advancing our knowledge about the interaction between long-range high-power lasers and energetic materials, with a particular emphasis on understanding the response of a 155-mm shell under various surface irradiations, taking into account external factors such as atmospheric disturbances. The analysis addresses known limitations in understanding the use of non-realistic targets and the negligence of ambient conditions. The model employs the three-dimensional level-set method, computer-aided design (CAD)-based target design, and a message-passing interface (MPI) parallelization scheme that enables rapid calculations of the complex chemical reactions of the irradiated high explosives. Important outcomes from interaction modeling include the accurate prediction of the initiation time of ignition, transient pressure, and temperature responses with the location of the initial hot spot within the shell, and the relative magnitude of noise with and without the presence of physical ambient disturbances. The initiation time of combustion was increased by approximately a factor of two with atmospheric disturbance considered, while slower heating of the target resulted in an average temperature rise of approximately 650 K and average pressure increase of approximately 1 GPa compared to the no ambient disturbance condition. The results provide an understanding of the interaction between the high-power laser and energetic target at a long distance in an atmospheric condition.

Evaluation of Organic Matter and Trace Metal Contaminations of Intertidal Sediments from Coastal Islands in the Southern Region of Jeollanam Province (전남 남부 도서갯벌 퇴적물의 유기물 및 미량금속 오염 평가)

  • Hwang, Dong-Woon;Kim, Pyoung-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.5
    • /
    • pp.626-637
    • /
    • 2013
  • We measured the grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS) and trace metals (Al, Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As) of intertidal surface sediment collected from 11 islands (62 stations) in the southern region of Jeollanam Province. The objective of this research was to evaluate the organic matter and trace metals contaminations of sediments from coastal island tidal flats. Surface sediment texture was characterized as follows: mud, sandy silt, muddy sand, and slightly gravelly sand facies. The finer sediments are mainly dominated in the northern part of each island. The concentrations of IL, COD, AVS and some trace metals (Al, Fe, Zn, Cr, Cu, and Hg) were higher in the northwestern part of Wan Island and the area between Gogeum and Sinji Islands, and were associated with relatively finer sediment, as compared to other locations. The concentrations of Mn, Pb, Cd, and As were higher in the northwestern and southeastern parts of Geoguem and Pyungil Islands, but were not correlated with mean grain size. Based on sediment quality guidelines (SQGs), the concentrations of trace metals were lower than the values of effect range low (ERL), used in United States, and threshold effects level (TEL), used in Korea, with exception of As. Similarly, the intertidal sediments were moderately contaminated with As, based on the the enrichment factor (EF) and the geoaccumulation index ($I_{geo}$). The high concentration of As in intertidal sediments from this study region may be due to the input of naturally or artificially contaminated submarine groundwater, contaminated waste from seaweed aquaculture operations and/or land-based seaweed processing facilities. Further studies are needed to identify the sources of As in this study region, and to determine the effects of As contamination on coastal ecosystem.

Evaluation of Heavy Metal Contamination in Intertidal Surface Sediments of Coastal Islands in the Western Part of Jeollanam Province Using Geochemical Assessment Techniques (지화학적 평가기법을 이용한 전남 서해 도서갯벌 퇴적물내 중금속 오염도 평가)

  • Hwang, Dong-Woon;Kim, Seong-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.772-784
    • /
    • 2011
  • We measured grain size, organic matter, and metallic elements (Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As) in intertidal sediments collected from six islands in the western part of Jellanam Province in order to evaluate heavy metal contamination in the tidal flat sediments of coastal islands. The evaluation of metal contamination was carried out using geochemical assessment techniques such as sediment quality guidelines (SQGs), enrichment factor (EF), and geoaccumulation index ($I_{geo}$). Surface sediments were classified into four sedimentary facies: sand, gravelly muddy sand, slightly gravelly mud, and silt. The concentrations of heavy metals in intertidal sediments from Jaeun, Amtae, Biguem, and Docho islands showed good positive correlations with mean grain size and ignition loss, indicating that the concentrations of metallic elements in these sediments were dependent on grain size and the organic matter content. The concentrations of heavy metals in sediments from almost all of the stations were lower than two criterion values proposed by the National Oceanic and Atmospheric Administration (NOAA) in the United States. Based on the EF and $I_{geo}$ results, surface sediments were a little polluted for Cr and were moderately polluted for As. Our results suggest that more intensive studies are necessary in the future in order to determine the major source of As in intertidal sediment and to evaluate the As pollution level in macrobenthos.